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ABSTRACT

The vibration characteristics of integrally stiffened skin stringer

panels have been determined using the method of transfer matrices. It was

found that this type of structure can behave in a manner quite unlike a

conventional structure composed of a flat skin and extruded open section

stringers. The integrally stiffened skin tends to have mode shapes and

natural frequencies governed by the bending stiffness of the stringers.

As a result the stringers deflect with the skin and the panel mode shapes

resemble those of simple flat plates. The calculated mode shapes have

been verified experimentally by exciting a typical panel with harmonic

sound waves at approximately grazing incidence. The response was measured

by mean of accelerometers and strain gauges. The response to random noise

was also determined experimentally.

The damping of the resonant vibrations induced in integrally stiffened

panels was investigated theoretically and experimentally. The theoretical

calculations were verified by measurements of modal loss factors of a beam

taken from the cross secton of an integrally stiffened skin. The most

efficient method of those considered consisted of strip dampers bonded to

the free edge of the stringers. The strip dampers used were of two types.

The first consisted of a stiff viscoelastic material (LDhO0 of the Lord

Manufacturing Company) and the second was a shear system made up of two

skins of aluminium alloy with an interlayer of silicone rubber. The

reduction of rms panel response to random acoustic excitation was typically

seventy percent for a weight additon of one and one half percent.

A transient technique of excitation and analysis was used in some

beam and panel measurements, and it was found to be an effective means of

quickly determining natural frequencies and, in some cases, modal loss factors.

The effectiveness of the damping treatments on full scale structure

was confirmed experimentally. The addition of negligible weight reduced the

rms response by forty percent or more.

iii



TABLE OF CONTENTS

Page

I INTRODUCTION 1

II THE VIBRATION CHARACTERISTICS OF STIFFENED SKIN PANELS 6

II.1 The Vibration Characteristics of Builtup Structures 7
11.2 The Vibration Characteristics of Integrally

Stiffened Structures 11

11.2.1 Transfer Matrix Concepts 13
II.2.1(a) The field transfer 13
II.2.1(b) The point transfer 15
II.2.1(c) The total transfer and solution 17
11.2.2 Normal Mode and Natural Frequency Calculations 17

III THE VIBRATION CHARACTERISTICS OF BEAMS TAKEN FROM AN
INTEGRALLY STIFFENED SKIN CROSS SECTION 26

III.1 Energy Method Using Simple Assumed Mode Shapes 28
111.2 Transfer Matrix Analysis 32

111.2.1 Concepts and Derivation 32
111.2.2 Transfer Matrix Calculations and

Comparison with the Energy Method 34

IV DAMPING TREATMENT AND ANALYSIS 37

IV.I Analysis of the damping system 39
IV.2 Extensional or Link Analysis 41
IV.3 Flexural Analysis 43

IV.3(a) Cantilevered treatment 44
IV.3(b) Beam excited at both ends 46

IV.4 Total Strain Energy and System Loss Factor 49
IV.5 Shear System and Adaptation of Analysis 54

V METHOD OF DETERMINING DAMPING MATERIAL PROPERTIES 56

VI SIMPLY SUPPORTED BEAM EXPERIMENTAL RESULTS 66

VI.1 Steady State Measurements 68
VI.2 Transient Excitation Tests 73

VII PANEL EXPERIMENTAL WORK 78

VII.l Steady State Harmonic Tests 80
VII.2 Stationary Random Acoustic Excitation Tests 84

iv



Page

VII.2(a) Data Analysis Techniques 84

VII.2(b) Stationary Random Excitation Experimental
Results 86

VII.3 Swept Sinewave Tests 90

VIII THE MEASURED DYNAMIC PROPERTIES OF SOME SILICONE RUBBERS 91

VIII.1 Specimen and Apparatus Design 91
VIII.2 Experimental Results 9h

IX FULL SCALE TESTS 96

X CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK 99

APPENDIX I 102
APPENDIX II 105
APPENDIX III 110
APPENDIX IV 114

REFERENCES 115

V



LIST OF ILLUSTRATIONS

2.1 Skin stringer configurations 131

2.2 Normal modes for six spans with equal stringer spacing (Ref. 4) 132

2.3 Frequencies of coupled flat plates 133

2.4 Integrally stiffened panel. Variation of natural frequencies
with skin thickness. b = 3", z = 14" 134

2.5 Test panel details 135

2.6 Schematic of a general integrally stiffened N span panel showing 136
stringer and span designation

2.7 Schematic of stringer geometry for parameter calculations 137

2.8(a) Calculated mode shapes for an integrally stiffened panel with
edges parallel to stringers simply supported 138

(b) Calculated bending moments for an integrally stiffened panel
with edges parallel to stringers simply supported 139

2.9(a) Calculated mode shapes for an integrally stiffened panel with 140
edges parallel to stringers clamped

(b) Calculated bending moments for an integrally stiffened panel 141
with edges parallel to stringers clamped

2.10(a) Calculated mode shapes for an integrally stiffened panel with 142
edges parallel to stringers free

(b) Calculated bending moments for an integrally stiffened panel 143
with edges parallel to stringers free

2.11 Variation in calculated panel natural frequency with mode number 144
for various configurations

2.12 Calculated natural frequencies for a six span panel with simply 145
supported ends and fixed edges

2.13 Variation of natural frequency with frame pitch for a six span 146
panel with simply supported ends and fixed edges

2.14 Calculated integrally stiffened panel mode shapes for 6 spans 147
and fixed edges. Frame pitch = 10.0 inches

2.15 Calculated integrally stiffened panel mode shapes for 6 spans 149
and fixed edges. Frame pitch = 11.0 inches

2.16 Calculated integrally stiffened panel mode shapes for 6 spans 151
and fixed edges. Frame pitch = 12.0 inches

2.17 Calculated integrally stiffened panel mode shapes for 6 spans 152
and fixed edges. Frame pitch = 14.0 inches

3.1 Natural frequency ratio for a 6 span simply supported beam
(energy method) (geometry of Table 3.1) 155

vi



Page

3.2 Natural frequencies for a 6 span beam (Transfer Matrix method) 156

3.3 (a) Calculated mode shapes for a 6 span simply supported beam 157

with 7 stringers

(b) Calculated bending moments for a 6 span simply supported 158

beam with 7 stringers

3.4 Variation of natural frequencies of a 6 span simply supported

beam with mode number (7 stringers of constant geometry) 159

3.5 Variation in natural frequencies of a 6 span simply supported

beam with skin thickness (7 stringers of constant geometry) 16o

4.1 Damping treatments 161

4.2 Variation in response of the test panel to single point

excitation with the addition of damping material (ref. 10) 162

4.3 Force at forced end of damped cantilever beam 163

4.4 Moment at forced end of damped cantilever beam 164

4.5 Phase of E M I for a damped cantilever forced by unit 165

d d

amplitude end translation

4.6 Displaced shape of damped cantilever beam excited by end

translation 166

4.7 Displaced shape of damped cantilever beam excited by unit

amplitude end rotation. 167

4.8 Force at the forced end of a doubly attached damped beam 168

4.9 Moment at the forced end of a doubly attached damped beam 169

4.1o Force at the fixed end of a doubly attached damped beam 170

4.11 Moment at the fixed end of a doubly attached damped beam 171

4.12 Phase of rMI at Y 0 for a doubly attached damped beam

d d 172
excited 10 W(O) 1.0

4.13 Phase of E I at y k for a doubly attached damped beam

excited only by w(O) 1.0 173

4.14 Displaced shape of a doubly attached damped beam excited only

by w(O) = 1.0 174

4.15 Displaced shape of a doubly attached damped beam excited only

by e(o) = i.o 175

4.16 Flexural strain energy for three damped double cantilevers 176

4.17 Cantilever damper displacement when excited by a six span beam 177

4.18 Flexural strain energy for six damping beams fixed to seven

stringers 178

4.19 Schematic of sandwich beam damper and method of application 179

vii



Page

5.1 Block diagram of Servo Controlled test system (Ref. 41) 180

5.2 Force (imaginary part) and natural frequency ratio as a function
of "mass change" due to electronic feedback 181

5.3 Schematic of the single degree of freedom system used to measure
the dynamic properties of viscoelastic materials 182

5.4 Phase angle between force and displacement for a single degree
of freedom system with hysteretic damping. 183

5.5 Phase plane representation of the forces in a single degree of
freedom system with hysteretic damping 184

6.1 Beam specimen with cantilever dampers 185

6.2 Block diagram of the Electronic System for beam response 186
measurements

6.3 Frequency response of a 6 span simply supported beam 187

6.4 Histogram of measured stress and maximum stresses calculatedý 188
using the measured values and theoretical mode shapes

6.5 Steady state vector response plot for mode 3 (no added damping) 189

6.6 Steady state vector response plot for mode 5 (no added damping) 190

6.7 Steady state vector response plot for mode 3 (0.5" x 0.08" LD400 191
cantilever dampers added)

6.8 Steady state vector response plot for mode 5 (0.5" x 0.08" LD40o 192
cantilever dampers added)

6.9 Transient response and excitation traces for a 6 span beam
(frequency swept from 10 to 600 Hz in 5 seconds) (traces 193
recorded at 5 cm/sec)

6 .10(a) Computer evaluated Fourier transform of the response of a six
span beam excited by a force swept from 10 Hz to 600 Hz in 194
5 seconds

6.10(b) Computer evaluated Fourier transform of the transient force
swept from 10 Hz to 600 Hz in 5 seconds 195

6.11 Vector plot for mode 3 obtained by the transient analysis 196
technique (undamped beam)

6.12 Vector plot for mode 5 obtained by the transient analysis
technique (0.5 inch x 0.080 inch double cantilever dampers) 197

7.1 Sketch showing support structure for acoustic tests 198

7.2 Variation in response of the test panel to harmonic acoustic
excitation with the addition of damping material 199

7.3 Vector response plot for mode 2 of a 6 span panel excited
acoustically 200

viii



Page

7.4 Comparison between theory and measured mode shapes at major 201
peaks in the frequency response curve

7.5 Acceleration response curves at various stations along the 202

panel length for two frequencies

7.6 Test panel mounted in the acoustic tunnel 203

7.7 Frequency response for the six span panel with added edge
support (unconstrained damping layer only) 204

7.8 Measured mode shapes at the frequencies of peak response (to

acoustic excitation) in the panel frequency response curve. 205

7.9 Spectral density of the acoustic tunnel microphone signal 206

7.10 Spectral density of the panel strain response with no damping
added to the stringers 207

7.11 Spectral density of the panel strain response with a strip of
damping material 2 inches wide by 0.06 inch thick bonded to
the stringers 208

7.12 Waveform and spectral density of the panel response with extra
edge support and no extra damping 209

7.13 Waveform and spectral density of the panel strain response with
extra edge support and a strip of damping material 3 inches
wide by 0.035 inch thick bonded to the stringers 210

7.14 Waveform and spectral density of the panel strain response with
extra edge support and a one inch wide shear damper (0.018 inch
skins, 0.020 rubber) bonded to the stringers. 211

7.15 Moduli of the Fourier transforms of the panel transient response
and excitation (configuration of Figure 7.12) and the derived
transfer function 212

8.1 Specimen for the determination of dynamic shear properties. 213

8.2 Mounted specimen for dynamic shear property determination 214

8.3 Accelerations measured at various points in the structure of
Figure 8.2 215

8.4 Apparatus for the dynamic shear tests 216

8.5 Curve of temperature rise versus heating tape current 217

8.6 Measured loss factor for Material 3 218

8.7 Measured shear modulus for Material 3 219

9.1 Full scale test specimen 220

9.2 Variation in calculated natural frequency with mode number for 221
the full scale test specimen

ix



Page

9.3 Waveform and spectral density of the full scale structure panel
response before the addition of damping treatments 222

9.4 Waveform and spectral density of the full scale structure panel
response damped by a single strip of LD400 3 inches wide by
.125 inch thick 223

9.5 Waveform and spectral density of the full scale structure panel
response damped by a single 1 inch wide shear damper (.018 inch
skins, .020 inch rubber) 224

x



LIST OF TABLES

Page

2.1 Test panel constants 119

2.2 Natural frequencies for the integrally stiffened panel of
Figure 2.5 (simply supported ends) calculated by the Transfer
Matrix method or by Reference 15 120

2.3 Calculated natural frequencies for the panel with fixed edges
and simply supported ends for different values of frame pitch 121

3.1 Beam parameters 122

3.2 Calculated natural frequencies for a 6 span beam 123

3.3 Calculated natural frequencies for a simple beam (no stringers) 123

4.1 Panel response (to single point excitation) reduction produced 124

by various damping treatments (Reference 10)

4.2 Calculated strain energies - 6 dampers fixed at each end 124

4.3 Total loss factors calculated for the system of three double 125
cantilevers of damping material

6.1 Natural frequencies of a 6 span simply supported beam with 126

7 stringers

6.2 6 span simply supported beam loss factors (steady state measure- 126
ments)

6.3 Characteristics of a 6 span simply supported beam with 7 stringersl27
(measured by a transient technique)

7.1 Reduction in the peaks of the frequency response curve for a six
span panel by the addition of LD400 damping material across the 128
stringer tips (acoustic excitation)

7.2 Measured root mean square panel response to random acoustic 128
excitation

7.3 Reduction in panel root mean square response to random excitation1 2 9
by two widths and two thicknesses of LD400

7-.4 Reduction in panel root mean square response to random excitation 129
by the shear damper system

9.1 Percentage reduction in full scale specimen response to random

noise by the addition of strip dampers. 130

xi



NOTATION

b stringer pitch (in.)

d beam width (in.)
subscript "td" designates damping material

f frequency (Hz)

h skin thickness (in.)

h stringer thickness (in.)5

hd damping beam thickness (in.)

z frame pitch, or
damping beam length (determined by context) (in.)

n number of half waves along the length of a simply supported beam

E, Ed Moduli of elasticity (lb.in-2

F force (lbs)

G shear modulus (lb.in-2

H stringer height (in.)

I, Id moments of area (in4)

K extensional stiffness (lb.in-I)

L simply supported beam length (in.)

M number of stringers in a panel, or
moving mass in a single degree of freedom system (lbs) determined
by the context)

MV Mr skin bending moments to the left and right of a stringer (in.lb)r

M damping material bending moment (lb.in)

N number of skin stringer spans

Q shear force (lbs)

T strain energy of a simply supported beam (lb.in)m

TdeTdf extensional and flexural strain energies of the strip dampers
(lb.in)

w transverse displacement (in.)

x, y linear coordinates (in.)

1', Pd beam mass per unit length (lb.in-I)

1rd 2Tit loss factors

V Poisson's ratio

W frequency (radian sec-

xii



X beam parameter = (2) (in"El"

e angle of rotation (radians)

p density (lb.in-3)

denotes the absolute value of
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I. INTRODUCTION

Parts of the external skin of a modern high speed aircraft will

spend most of their working life in a rather hostile acoustic environment.

They will have to contend with such things as a turbulent boundary layer,

noise from high speed jet engines, and vibrations induced by large scale

air turbulence and by runway roughness, among others. If large scale

fatigue problems are to be avoided careful consideration must be given

to those forces generating random vibrations in the structure and the

actual vibration characteristics of the structure itself.

The stresses induced in structural members by fluctuating loads

are of several types. The primary ones due, for instance, to aircraft

accelerations caused by atmospheric turbulence or runway roughness, will

be relatively low frequency phenomena creating axial stresses in such

components as stiffened skins. These are resonant phenomena, but will

involve only a few of the overall bending or torsion modes of the wings,

fuselage, or other primary structure.

A very important secondary form of stress is that due to

localized high frequency vibration of some parts of the overall structure.

These are transverse vibrations which result in bending stresses and they

can be caused by high frequency short wavelength fluctuating acoustic

pressures. The local behaviour of stiffened skins under these conditions

will almost always be multi-modal, resulting in stresses over a range

of frequencies. In some cases it will be possible at the design stage

to reduce these resonant transverse vibrations within the structure to

insignificant levels, but unfortunately such cases are rather rare.

Usually it will be necessary to know the limits which they will reach

and if these are too high some external means must be used to further

reduce these vibrations or the stresses induced by them.

Fortunately, when dealing with effects in the high frequency

range it is not usually necessary to study the vibration characteristics

of the structure as a whole. Although it is true that the manner in
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which one component vibrates does depend on all the other parts to which

it is attached, on the ways in which they are joined together, and on

the mean or static component of stress present, it is almost always

possible to identify predominant modes of vibration in which major dis-

placements are in either the underlying support structure or in the skin

and its associated stringers. Having made this identification it is

then possible to analyse the modes as though they were totally independent.

In this report this approach has been taken and it has been

decided to concentrate on those frequencies in the range from about 100

to 1000 Hz. It is in this range that the noise from most modern jet

engines contains a great deal of its energy, as does a turbulent boundary

layer. These two forms of excitation are usually the most severe ones

affecting skin stringer panels and will therefore cause the most severe

fatigue damage due to transverse vibrations. This is especially true

because in this range of frequencies built up structures have a great

many natural frequencies (even considering the above stated simplification)

and thus any reasonable, practical design must have some resonances in

the frequency band of strongest excitation.

At present there is a growing trend away from what, in this

report, will be called a conventional built up structure. This will be

defined as a structure made up of a light alloy skin stiffened in one

direction by stringers which may be open or closed in section. These

stringers are generally rivetted to the skin, although other methods,

such as bonding, have been used. Since they are usually rivetted, the

situation can be quite serious from the point of view of fatigue both

under axial and bending stress conditions. The myriad of rivet holes

act as stress concentrations in themselves and also trap moisture and

other corrosive substances, which create further stress raisers. Also,

rivet fit is a very difficult quality control item and a loose rivet can

cause fretting and further fatigue problems. Finally there is the

fairly expensive process of actually assembling the whole skin-stringer,

which is in itself a disadvantage.

One alternative type of skin structure which is being used to

eliminate some of the problem areas is a honeycomb or laminated construc-

tion with the centre layer being shear stiff but very light. A second is
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a fibre reinforced material. This type can have anisotropic stiffness

and strength characteristics and can be made up in various matrix-fibre

configurations ranging from the very familiar glass-fibre in plastic

to the more exotic carbon or boron fibre in metal matrix.

A third alternative which is quite widely used and which is to

be investigated in this report is the integrally stiffened or machined

plank construction. In this type of construction the material starts

as a homogeneous, thick slab of material (light alloy for the cases of

interest here) and large quantities of the material are machined away

either mechanically or chemically. This leaves a finished skin-stringer

panel with the desired dimensions.

This type of structure has several advantages over the conven-

tional type. The first and a very important one is that manufacturing

costs can be reduced by the high degree of automatic processing possible.

Secondly, the elimination of a great many rivet holes cannot help but be

a step in the right direction in the alleviation of the fatigue problem.

Certainly when dealing with the primary axial fluctuating stresses the

integrally stiffened skin with its lack of rivet holes and superior strength

and buckling characteristics is very attractive. However, this type of

structure has some characteristics which tend to reduce the benefits to

overall fatigue performance. In any builtup structure the majority of

the damping which limits the resonant local or transverse vibrations

comes about due to friction between moving components. Since the

machined plank eliminates all of the stringer-skin interfaces, the total

absence of the small but important energy dissipating sliding motion of

one over the other is also eliminated. As a result the damping will be

lower, perhaps by as much as an order of magnitude and the resonant trans-

verse vibrations can build up to a higher level subjecting the structure

to higher stresses.

It has been found that the vibration characteristics of

integrally stiffened skins are significantly different from those of a

conventional structure. The basic difference is that the stringers

deflect with the skin rather than acting as a high degree of fixity on

the skin. This means that the stringers are subjected to relatively
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high bending stresses and a fatigue crack can start at the tip of the

stiffener. Under axial load conditions this crack might not grow too

rapidly, but under the influence of the bending stresses it will propagate

readily across the stringer. Since there is no interface between the

stringer and the skin the crack is then free to grow into and through the

skin as well, and total failure can result quickly.

Thus, the integrally stiffened skin has some rather severe

limitations because it can readily be excited to rather high stress levels,

and under the influence of these, fatigue cracks can readily be propagated.

However, its superior cost and static strength characteristics make it

quite attractive. By a study of the dynamic behaviour of this type of

structure it should be possible to minimize the effects of the short-

comings and take advantage of the superior qualities.

In this report attention has been focussed on the integrally

stiffened skin-stringer construction and its local transverse vibration

characteristics. Little has been reported in the open literature on

these vibration characteristics and it was hoped that a little under-

standing could be achieved concerning the dynamic behaviour under the

influence of acoustic forces similar to those to which the structure will

be subjected in service.

Since it is likely that these structures will have inherently

lower damping, there is a need to look at some ways of adding means of

energy dissipation. Due to the geometric properties of the type of

structure it is possible to use some rather efficient configurations for

this purpose. It was decided to investigate the use of visco-elastic

materials in various ways including tension-compression, bending and shear

to dissipate the energy and this led to a third and final area of investi-

gation.

It has already been pointed out that the frequency range of

interest extends from about 100 to 1000 Hz. In a modern aircraft there

is also a wide temperature variation imposed on the materials present.

In a supersonic aircraft, for instance, temperatures might vary from -50°C
at subsonic speeds at high altitude to perhaps 1500C at supersonic cruise.
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Viscoelastic materials are inherently nonlinear, frequency dependent

and generally extremely temperature sensitive. It was therefore con-

sidered necessary to make at least a cursory investigation of some of

the available viscoelastic materials so as to be able to make if not

the optimum choice at least a sensible one.



II THE VIBRATION CHARACTERISTICS OF

STIFFENED SKIN PANELS

The two major types of skin stringer configuration are shown

schematically in Figures 2.1(a) and (b). In Figure 2.1(a) the conven-

tional structure is shown to be made up of a flat skin with Z section

stringers attached by rivets. The skin could be curved as in a fuselage

and the stringers, of course, could have other shapes and might be closed

section, but the Z shaped extruded stringer is typical. The integrally

stiffened structure is shown in 2.1(b) for comparison. In this configura-

tion the stringers are almost invariably rectangular in shape due to the

necessity of machining from a solid slab.

The basic difference in stringer cross section leads to some

interesting variations in behaviour. The extruded stringers tend to

be very deep relative to their thickness, which means that the transverse

bending rigidity will be quite high relative to the torsional rigidity.

This effect is reinforced by the flange which is the full stringer depth

away from the line of attachment to the skin.

The integral stiffener, on the other hand, is usually quite

thick relative to its depth. This means that the bending rigidity is

now considerably smaller than that of an extruded stringer when compared

to the torsional rigidity. In fact for a given material weight or

stringer cross sectional area for a builtup structure the ratio of

bending stiffness to torsional stiffness might be of the order of 2000:1.

For an integrally stiffened structure the corresponding figure would be

closer to 20:1. This stiffness ratio difference in particular results

in some differences in vibration characteristics.
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II.1 The Vibration Characteristics of Builtup Structures

In a typical complete aircraft structure the skin-stringer panels

are supported on a grid of very stiff sub structure of ribs and spars.

Since these are much stiffer than the stringers themselves, they tend to

divide the skin up into panels which will vibrate in transverse modes

almost independently of the adjacent or other more widely separated panels.

The stiff and massive substructure will itself vibrate, probably in modes

which will cause motions and stresses in the skin, but in general this

will occur at frequencies other than those at which the skin panels them-

selves respond strongly. In practice it will usually be possible to

identify and separate those stresses which involve predominantdy local

skin vibrations from those primary stresses due to the total structure

motion.

If it is assumed that the vibrations of various major sub

sections of structure can be separated it becomes possible as a first

step in obtaining the overall picture of the dynamic characteristics of

a structure to analyse individual panels. These will be bounded by ribs

or spars on all four edges and will consist oý several skin-stringer spans.

The individual plates (one skin-stringer span) have quite a high aspect

ratio, and hence the vibration characteristics will not be seriously

affected by end conditions along the edges perpendicular to the stringers.

There exists in the literature a considerable amount of infor-

mation concerning the calculation of the natural frequencies and normal

modes of vibration of this type of structure. Lin (1) has shown that the

natural frequencies fall into groups and was able to calculate the values

for the lower and upper bounding modes of the groups. Lin and his

associates (2, 3) and Mercer and Seavey (4) have developed transfer

matrix techniques to calculate normal modes and natural frequencies other

than the lower and upper bounding modes, but the modes are still found to

fall into groups or bands. Lindberg and Olson (5) have developed a

finite element technique which gives results which are in agreement with

the other methods.

The finite element approach is a numerical method and therefore
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approximate, but it has the advantage of flexibility of edge conditions.

It is possible to specify the restraints on all four edges of the panel.

The transfer matrix method, however, is a normal mode approach and it is

necessary to assume that the short plate edges are simply supported in

order to have an exact solution. Appropriate long edge restraints can

be specified using either method and the results are similar for those

cases in which they can be compared. The normal modes and corresponding

natural frequencies for the first band of modes of a 6 span panel with

the edges parallel to the stringers simply supported are shown in Figure

2.2. This figure is taken from reference (4), and the characteristics

displayed are typical of this type of structure.

The modes fall into groups and the first band contains modes

with one half wave between frames (stringer ends) and one half wave in

each skin-stringer span. The mode with the lowest natural frequency in

the group is the one in which adjacent plates vibrate out of phase, that

is, each stringer twists only and does not tend to bend. The mode with

the highest natural frequency is one in which all plates vibrate in phase,

with the stringers tending to bend and not twist. These two modes are

called the stringer twisting and stringer bending modes respectively.

Between these bounding modes there are intermediate modes in which the

stringers both bend and twist. The theoretical total number of modes

in a band is the same as the number of spans. In practice, however, extra

modes appear with forms similar to those which are predicted. These

arise from the small but not insignificant coupling of the panel with the

surrounding structure.

The typical variation of the natural frequencies of the upper

and lower bounding modes with skin thickness for this type of structure

is shown in Figure 2.3. Also shown in the figure are the natural fre-

quencies for a simply supported and a fully fixed plate with the same

dimensions as the individual plates of the stiffened panel. The upper

bounding mode has a frequency very close to that corresponding to the

fully fixed edge condition. This is as expected because in the upper

bounding mode the plates are all moving in phase and the stringer moves

very little due to its very high bending stiffness. The plates are

essentially vibrating as independent units with fixed edges.
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The lower bounding mode has a frequency somewhat higher than

the simply supported plate frequency. This is again as expected because

the stringer torsional rigidity is not negligible compared to the skin

bending rigidity. Hence it does impose some elastic torsional restraint

and raise the natural frequency. This effect is somewhat reduced by

stringer rotary inertia, but this quantity is usually very small.

For a given skin thickness an increase in stringer dimensions

will have little effect on the upper bounding mode, but as the stringer

torsional rigidity increases the lower bounding mode frequency increases.

Hence the frequency bandwidth of the total group decreases and the modal

density of the structure increases in the same frequency regions.

Thus far only the first group of modes has been considered.

There will be other groups containing one half wave between adjacent

stringers and two or three or more half waves between frames. There will

also be groups containing one half wave between frames and two or three

or more half waves in each skin span. The order of appearance of these

groups cannot generally be predicted as this depends on the panel geometry.

In fact some groups will overlap others in the frequency domain. However,

the considerations which apply to the first band apply equally to the

others.

The behaviour of typical builtup structures has been investi-

gated experimentally by Clarkson and Ford (6,7,8). In reference (6) they

found that the response of skin stringer panels tended to be as expected

from the theory. In the fundamental mode adjacent panels vibrated out

of phase, and the motions of panels separated by frames were not corre-

lated when vibrating at frequencies of major skin resonances. Thus the

assumption that it is suitable to consider only the skin stringer panel

bounded by frames for model construction and theoretical calculations was

justified. They also found that usually only two or three skin plates

were involved in any one mode. They felt this was due to physical

differences in the plates. In damping calculations they found that the

damping ratio of the major peaks generally fell between 1 and 2 percent

of critical.

Clarkson, in reference (8), gave filtered space correlograms

of the noise pressures on aircraft components due to typical jet engines.
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He pointed out the fact that noise pressures would be correlated over

many skin stringer bays in the frequency range of 100 to 1000 Hz. As

a result the fundamental mode of a conventional type of structure with

adjacent plates vibrating out of' phase with each other would not be

strongly excited. The upper bounding mode, however, would be quite

definitely excited as would some intermediate modes. It is then

necessary at the design stage to ensure that the upper bounding mode

falls well above the frequency at which the sound energy peaks.

Intermediate modes will also interact; that is, noise of

one frequency will excite several modes. As a result, stresses due

to intermediate modes can be quite high. Accordingly, to keep total

stresses down, the lower bounding mode should fall at the same or higher

frequency than the noise peak and the upper bounding mode should have

as high a frequency as possible. This will result in more widely

spaced intermediate modes and generally lower stresses. As described

earlier open section stringers have very high bending to torsional stiff-

ness ratios and hence well separated upper and lower bounding modes can

be obtained by proper skin geometry selection.
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11.2 The Vibration Characteristics of Integrally Stiffened Structures

The vibration characteristics of builtup structures are quite

well documented in the literature, but there is very little available

concerning the behaviour of integrally stiffened structures under con-

ditions of acoustic or other vibratory excitation. Holehouse (9)

briefly described some calculations on integrally stiffened panels. He

applied Lin's technique to obtain upper and lower bounding modes for

this type of structure. His results are shown in Figure 2.4. This shows

the variation of frequency of the stringer torsion mode and the stringer

bending mode (as described in section II.1) with increasing skin thickness

for a panel with constant stringer geometry and frame pitch.

When the skin is very thin the skin plates in adjacent spans

vibrate completely independently of one another because they are not

stiff or massive enough to cause stringer vibration or motion. Thus,

even if adjacent spans are out of phase the stringer acts as a full fixity

and both bounding modes collapse on one frequency near that of the fully

fixed single plate.

As the skin thickness increases it hlegins to influence the

stringer vibration via the addition of both mass and stiffness. At some

point the skin flexural rigidity approaches the stringer torsional

rigidity in magnitude and the stringer twisting mode frequency drops

towards that of the simply supported single plate. At the same time

the stringer bending mode draws nearer to the natural frequency of the

stringer as a simply supported beam.

The interaction of the stringers and skin becomes quite complex

with each adding mass and stiffness to the other and influencing the

overall behaviour. When this happens, however, the stringers, unlike

those of a conventional structure, deflect an amount which approaches the

displacement of the skin.

Lyons (10) has formulated an energy method for calculating the

normal modes and natural frequencies of integrally stiffened panels and

obtained values which agreed well with those obtained using a transfer

matrix method. Lyons, in his experimental work, used a single panel
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consisting of six spans and seven stringers. This panel was still

available for use and since no tests involving acoustic excitation

had been carried out on it, it was decided to use it for the panel

response and damping tests. The panel calculations made by the

author were by a transfer matrix method and were based on the basic

geometry of this panel, which is shown schematically in Figure 2.5.

This figure shows the typical features of this type of structure, i.e.

rectangular and fairly thick stringers, quite close stringer spacing

and relatively thick skin. Lyons, in his experiments, had clamped the

panel between frames 22 inches apart (also shown in Figure 2.5) and this

was adopted as frame separation for some of the calculations. However,

the effect of varying this parameter and the associated aspect ratio,

i.e. ratio of frame pitch to stringer pitch, was investigated. This

was felt to be quite important for two reasons. In any full scale

structure (or experimental apparatus) the ends of the panel perpendicular

to the stringers will be supported in some way by frames. Lin and his

co workers consider these to be simple supports. To obtain exact solu-

tions the same assumption must be made in the case of the transfer

matrix method.

In builtup structures the individual plate aspect ratio will

always be quite high and hence this length will have little effect on

the natural frequency or overall mode shape. For a typical integrally

stiffened panel, however, the stringers will probably bend appreciably.

Hence the important aspect ratio may be that of panel length to overall

width. This is not very large and may even be less than unity in some

cases. Frame pitch might, therefore, have quite a large effect on the

results. Another reason for the importance of the length is the

possibility, in fact certainty, of having frames which are something

other than simple supports. The actual support conditions will lie

somewhere between simple and fully fixed. Although there is no precise

one to one correspondence or even a rigorous relationship, Szechenyi (11)

has shown that a panel fixed along two opposite edges will behave very

much like a similar but shorter panel simply supported along the same

two edges. If the behaviour of a stiffened panel is calculated for

various lengths and is not found to vary too rapidly, then a good approxi-
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mation to actual full scale vibration characteristics can be made even

though the true end conditions are not known.

11.2.1 Transfer Matrix Concepts

The method of transfer matrices as described in references (4)

and (12) relates the displacement, slope, moment and shear at a point

within a structure to the same quantities at another point. For the

use of this method the analysis has to be split into two parts. One

segment will deal with the individual skin plates and is referred to

as the field transfer. The second part relates to the stringer influence

and is called a point transfer.

11.2.1(a) The field transfer

In the case of a stiffened skin panel, either conventional or

integrally stiffened, it is assumed that the skin in each span is uniform

in thickness, density, modulus of elasticity, and width. Different

spans need not be the same. It is also assumed that the edges perpen-

dicular to the stringers are simply supported. A general integrally

stiffened panel and the coordinate axes are shown schematically in

Figure 2.6.

The equation of motion of free undamped vibration of the
.th
i span is given by

hipi

V4w + = 0 (2.1)
D.

D. is the bending rigidity of the ith plate and is given by1

E.h.
3

D1 1 2 (2.2)
= 12(1- v. )

w is the transverse displacement of the skin and a dot denotes

differentiation with respect to time.

Since each skin plate will be considered as a unit a local

coordinate y is useful. This is defined by
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=�1 _) (2.3)
b. stringer i

1

and 0<y <l

Substituting equation (2.3) into (2.1) and expanding leads to

+4w 2 4w 1 4w+ = (2.4)
---42 2D2 -4 D.

ax b. ax2 y b. ay1 1

The edges x = 0 and x = £ are simply supported and the

harmonic solution to (2.4) is

w(x, Y) = Yi(Y) sin --- e i~t (2.5)

where w is the frequency of vibration and Yi(y) is given by

Yi(Y) = A1 cosh kiy + A2 sinh k1Y

+ A3 cos k 2 y + A4 sin k 2 y (2.6)

The four A's are unknown constants determined by boundary

conditions and the k's are defined as

{wh)2 
1

k = bi ) + kl!l)2f (2.7a)
1 1 Di k.

k b {w(hp)i (1W_) }2 (2.7b)
2 i D i 2.

If the expression for Y is differentiated with respect to y three times

and the result written in matrix form it can be shown that the following
th

equation is obtained for the i span

1 (•) = Bi(Y)Ai (2.8)

where ý is the vector Y, Y', Y", Y"' (displacement and its first three
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derivatives) and A. is the vector of coefficients. B. is a square
2. 1

matrix consisting of cosh k.y, sinh klY, cos k2 y and sin k2 y and

their derivatives.

Because B. is a matrix with known elements the coefficient
1

vector, Iis can be written explicitly. The vector •i() consisting

of displacement and its three derivatives can be converted to the state

vector comprising the displacement, slope, moment and shear by a simple

transformation; and the final result for the field transfer is

I(1) = FI i(O) (2.9)

(1) is the state vector at the right hand side of span i and

i(O) is the state vector at the left side. F. is a field transfer

matrix with elements dependent on span geometry and frequency of

vibration.

II.2.1(b) The point transfer

The concepts of the previous section enable the components of

the state vector at one edge of a span to be related to those at the

other edge. When a stringer is reached, in order to proceed to the

next span it is necessary to account for the effect of that stringer.

There are several assumptions made in the analysis of this effect. It

is assumed that the stringer is actually attached to (or is part of) the

skin only along a line and not over an area. It is further assumed

that the stringer remains perpendicular to the skin and that there is no

cross sectional distortion of the stringer itself. The various necessary

parameters and their geometric relationship are shown schematically in

Figure 2.7.

Having made these assumptions the stringer forces and moments

can be calculated from the displaced shape of the skin at the stringer

line plus the inertia effects due to transverse and angular velocity.

The equations of continuity and equilibrium can then be applied. The

former states that displacement and slope on one side of the stringer

attachment line must be equal to those on the other side. The latter

ensures that the sum of moments and forces applied to the stringer are
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exactly balanced by inertia effects of the stringer. These effects are

summed up by the expression

I(Ri t) = - (Left) (2.10)

where P is a known point transfer matrix.

If the stringer cross sectional distortion were taken into

account it would be necessary at each stringer to branch the system. That

is, field transfers would be necessary for both attached skins and the

stringer (acting as a third plate). The geometry of the integrally

stiffened system, however, suggests that this will be a high frequency

effect, at least higher than the frequency range of primary interest,

and it has been neglected.

Some of the parameters necessary for the point transfer calcu-

lations are not completely straightforward and a resume will be given of

the methods and equations used.

Because the stringers of an integrally stiffened structure are

not clearly defined entities in the region of junction with the skin

some care must be taken. Some of the skin will be effective in bending,

acting as part of the stringer, and this should be included in the

calculations of the moment and polar moments of inertia. Holehouse (9)

has suggested an effective width of skin equal to 4/3 the stringer

thickness for this quantity.

The St. Venant pure tension constant for a rectangular section

is not an exact quantity but for a rectangle of depth equal to or greater

than about 5 times the width the constant can be approximated by 1/3 x

width3 x depth (13).

Lin (3) has defined the warping constant about the restrained

shear centre as
cw = c + Is2(2.11)

ws w z

where cw is the warping constant about the shear centre, I is the

moment of inertia of the stringer about a vertical line through the

centroid and sa is the vertical separation of the centroid and the

restrained shear centre.
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II.2.1(c) The total transfer and solution

Having defined the point transfer matrices it is possible to

write down a chain of transfers, that is, to proceed across the entire

panel. Intermediate state vectors can be eliminated by a series of

vector multiplications, noting that the state vector at the right end

of a span is identically equal to the state vector to the left of a

stringer, leaving the required matrix equation

; R = T0L (2.12)
0

T is the total transfer matrix and is obtained by the necessary matrix

and vector multiplications. All its elements are known, and its effect

is to relate the vector &R at the right of the last stringer to the

vector at the left of the first stringer. Since two of the ele-

ments of each of the I vectors are known from panel boundary conditions,

the final result is a sub-matrix from T which must have a zero deter-

minant for the boundary conditions to be satisfied. This will occur

for many frequencies, which can be found one at a time.

Seavey and Mercer (14) have developed an iteration program using

Gaussian elimination to solve for these natural frequencies. When the

natural frequency of a mode is known the state vector is calculated

throughout the panel by back substitution into the individual transfers,

and this yields the normal mode. This whole process is then repeated

to find as many normal modes as required.

11.2.2 Normal Mode and Natural Frequency Calculations

The method chosen for the calculation of normal modes and

natural frequencies was that of the previous section, and all computations

were made using the computer program of reference 14 and the University of

Southampton I.C.T. 1907 digital computer. The elastic and geometric.

constants for the panel of Figure 2.5 are listed in Table 2.1.

Natural frequencies, mode shapes and bending moment distributions

were calculated for three cases. The edges parallel to the stringers
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were considered to be (1) simply supported, (2) fully fixed, and (3)

free. As was stated previously, the only condition which could be

analysed using this method at present was that of simple supports along

the other two edges.

The mode shapes and bending moment diagrams for the first few

modes of each of these cases are shown in Figures 2.8, 2.9 and 2.10.

The natural frequencies of these modes are listed in Table 2.2.

Because the existing panel had one extra skin span on each

edge, the calculations for the free edge case were made assuming eight

spans. This configuration is not likely to be found in practice,

however, and this is the only instance in which the case was considered.

From Figures 2.8, 2.9 and 2.10 it appears that the integrally

stiffened structure being considered tends to behave in a manner very

similar to a flat plate. That is, the stringers deflect a great deal.

This fact was expected considering the ideas of Section 11.2. The

one variation from pseudo-flat plate behaviour is the appearance of

the first two modes in the free edge case. These modes are quite

feasible, however, because the program was written to consider a stringer

support at each free edge. It is not surprising, therefore, that the

two outer spans tend to act as independent cantilevered plates with a

large mass on the free edge.

Since these mode shapes (except for the first two of the free

edge case) looked so much like flat plate modes it was felt to be

advantageous to calculate the natural frequencies and mode shapes for

the cases with all stringer constants identically zero. This was, in

effect, the flat plate case. Only the simply supported and fixed edge

configurations were considered and the values are also listed in Table 2.

These calculations made it possible to have an independent check on the

reliability of the transfer matrix technique, because another method was

available.

Warburton (15) has used a Rayleigh-Ritz method assuming beam

functions to calculate the natural frequencies of free transverse

vibration of flat plates. His equations were used to calculate
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the natural frequencies to compare with the transfer matrix results, and

the values are listed in Table 2.2. From the comparison it appqars

that the method being used here is accurate and reliable.

In this context it should be pointed out that in some of the

calculations some numerical difficulties did arise, resulting in spurious

modes. These were always characterised by the fact that the iteration

required to find them was rather slow to converge and that the mode shapes

were often such that they could be discarded on appearance alone as being

spurious and impossible. Since these difficulties were infrequent and

the faulty values easily discarded, continued use was made of the method.

If the natural frequencies of Table 2.2 are plotted versus

mode number as in Figure 2.11, an interesting observation can be made.

For the lower order modes the unstiffened plate nastural frequencies were

much lower than those of the stiffened panel. However, as the mode

number increased the natural frequency of the former increased much more

rapidly than that of the latter.

This would imply that for modes involving relatively small skin

curvatures the stringer stiffness effect is higher than its mass or

inertia effect. However, as curvatures (and mode numbers) increase

the inertia effect becomes predominant. This is a reasonable effect

because the stringers are quite massive and in the higher order modes

they tend to translate a great deal, rotate a great deal, or in some

cases do both. It is probably the rotational effect which is making

the major contribution in this respect.

Two possible problem areas related to noise excitation and

acoustic fatigue became apparent in a study of Figures 2.8 to 2.11. The

first is that due to the presence of stringers, the modal density or the

number of the modes per unit frequency is increased and hence a band-

limited noise source is capable of exciting more of the modes. Secondly,

it was pointed out in Section II.1 that Clarkson has found the noise

pressures to be correlated at least over several skin stringer bays. In

the conventional structure this was advantageous because the fundamental

and lower order modes would, therefore, not be excited strongly. In the
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integrally stiffened structure under consideration, however, this is not

the case. Now the fundamental mode is one in which allspans vibrate

in phase, hence it can be very strongly excited. The criterion of

designing the fundamental panel frequency to be near the peak in the

excitation pressure spectrum could have drastic repercussions. Even if

the peak is not at or near the frequency of the fundamental, this mode,

being an easily excited one, can be set in motion by any significant

level of excitation.

One important parameter in determining the vibration charac-

teristics of the integrally stiffened panel is the frame spacing (for a

given number of spans). The values in Table 2.2 were computed using

Z = 22.0". The effect of varying this between 10.0 inches and 26.0

inches was investigated. In preliminary calculations it had been found

that the effect of edge fixity (simply supported or clamped) parallel to

the stringers had very little influence on mode shapes, natural frequencies

and variation of natural frequency with mode number. The end fixity

(perpendicular to the stringers), unlike in the case of a conventional

structure, is likely to have a more profound effect because the bending

stiffness of the stringer comes into play. Since the true end conditions

are unknown, an investigation of the effect of changing distance between

simple supports can also be used as a crude approximation to changing

end conditions (11).

For this part of the investigation the cross-sectional geometry

was kept constant as listed in Table 2.1. Only the fixed edge case was

analysed due to the general similarity in behaviour which the simply

supported edge case displayed. As many natural frequencies were

calculated for each length as were needed to establish the general

pattern of behaviour. The natural frequencies obtained are listed in

Table 2.3.

The results listed in Table 2.3 can be summarised by plotting

natural frequency versus mode number, with frame pitch as an independent

parameter. This is shown in Figure 2.12. The shapes of all the curves

in this figure are quite similar, and they tend to converge at the higher

mode numbers. The higher modes involve many half waves between edges and,
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therefore, the fact that the curves come together is to be expected.

The assumption that a panel with fixed ends can be approximated

by a shorter one with simply supported ends is also supported by Figure

2.12. Lindberg et al have calculated some of the normal modes and

natural frequencies for the same panel using their finite element method,

but they assumed fixed ends. Their mode shapes agreed with those

calculated by the author. The calculated natural frequencies are also

shown in Figure 2.12. The natural frequencies of the high order modes

should not be influenced greatly by end conditions because these contain

many half waves in the width of the panel and only one in the length.

This is shown to be true by the convergence of the two lines representing

22 inch frame pitch. However, the values of natural frequency for fixed

ends are much higher than those for simply supported ends for the low

order modes. From the change in natural frequency with mode number for

the fixed end panel it would appear that a 16 inch simply supported frame

pitch would adequately describe the configuration.

A closer look at the spacing of the curves of Figure 2.12 re-

veals that there may be some change in the behaviour pattern of the panel.

As the length of the panel changes from 26 inches to 12 inches the

spacing of the natural frequencies for any one mode gets larger, as it

would in the case of a simple plate or of a simple beam with the inherent

dependence of natural frequency on 1/Z2. For lengths less than 12 inches

however, the spacing then decreases again, at least for the first few

modes.

The natural frequencies have been re-drawn in Figure 2.13, with

frame pitch as abscissa. The mode number is now the independent variable.

The first four modes definitely show the above mentioned trend. At a

length of 12 inches these four are almost coincident. This effect is

similar to the behaviour of a conventional builtup structure when the

stringer bending and stringer torsion modes are very close together. In

the builtup structure this occurs when the stringers are so rigid or the

skin so flexible that each skin plate vibrates independently of all

others. This cannot be the case for the integrally stiffened panel

because the skin thickness has not been changed. Moreover, a further
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decrease in length, which further enhances the stringer effect, allows

the frequencies to diverge again.

The explanation becomes apparent if the natural frequencies of

the component parts of the structure are drawn, as in Figure 2.13. The

figure shows the natural frequency of the stringer as a simply supported

beam. It also shows that of a single skin plate as a plate simply

supported on all edges (calculated using reference 15). For complete-

ness the natural frequencies for a plate with the same dimensions as the

overall panel are shown. The single plate with fixed edges has a

natural frequency above the range of the graph.

The natural frequency of the first mode tends to follow the

stringer curve for the larger frame pitches. However, the stringer

curve and that for the single plate simply supported on all edges inter-

sect at Z - 12.0 inches. At about the same length the curve giving

the frequency of the panel fundamental mode begins to flatten, following

more closely the curve for the simply supported single plate. This

would suggest that the form of the fundamental mode might be changing at

this length. If it is changing, the short frame pitch must be causing

the stringer twisting mode to replace the stringer bending mode as the

one with the lowest natural frequency.

If this is the case then one further difference between the two

types of skin-stringer structure becomes apparent. This dissimilarity

is that for a conventional structure the stringer twisting mode is always

the lower bounding mode and its frequency is governed by the natural

frequency of an individual plate simply supported on all edges. Because

of the finite torsional restraint of the stringer the natural frequency

is somewhat higher than that of the plate. Similarly, the upper bound-

ing mode is the stringer bending mode, and its frequency is determined

by the fixed single plate condition.

Thus, in a conventional structure, the order of appearance of

the modes is always the same. It must be because the two bounding modes

are both governed by plate relationships, and as the length between frames

changes these two relationships change frequency in about the same way.

Under some conditions (e.g., a very thin skin) they may come close together,
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but for any length their order of appearance in the frequency domain

remains unchanged. The only other factor which might change this is

natural frequency of the stringer as a simply supported beam becoming

very low. This cannot happen with the assumed very large (or infinite)

bending stiffness.

The fundamental mode natural frequency for the integrally

stiffened panel is governed by either the stringer beam frequency or

skin plate frequency. The change of these two quantities with frame

pitch is radically different. The stringer frequency is inversely pro-

portional to the length squared. The natural frequency of the single

plate varies much less rapidly for the very large aspect ratio involved

and hence the two intersect. In fact, it is probable that for very

short lengths when the stringer natural frequency would be even higher

than the single fixed plate frequency the panel would then behave in

exactly the same manner as a builtup panel. However, for a practical

range of frame pitches, represented by figure 2.13, the stringer is of

prime importance in determining natural frequencies.

In the integrally stiffened skin a major factor governing the

frequency and shape of the fundamental mode is the frame pitch. For

the particular panel geometry studied, for frame pitches greater than

about 12 inches the first mode is expected to be the stringer bending

mode. For frame pitches less than that it is expected to be the

stringer twisting mode. The important thing, however, is that it is

not possible to say, a priori, what the order of appearance of modes will

be.

The easiest way to determine whether or not the order of appear-

ance of the various modes is, in fact, changing is to inspect the mode

shapes for various frame pitches. It has already been seen in Figure

2.9(a) that the 22 inch frames result in mode shapes similar to those of

an unstiffened flat plate. In Figures 2.14, 2.15, 2.16 and 2.17 are

shown the first 10 calculated mode shapes for 10 inch, 11 inch, 12 inch,

and 14 inch frame pitches and there is a very definite change in behaviour.

From Figure 2.12 it is apparent that the three shortest lengths could

possibly be considered to have their natural frequencies divided into
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groups as with a conventional structure. Figure 2.14 shows clearly that

the stringer torsion mode is the fundamental mode for the panel with 10

inch frames. Similarly, the sixth and highest mode in the first band

is the stringer bending mode. For this case even the next group of

modes is conforming to the pattern. The first mode in the second band

is the one with effectively two half waves per span. Again successive

modes have one fewer half wave.

The first six mode shapes of the 11 inch panel shown in

Figure 2.15 also conform to the behaviour of a builtup structure. However,

beginning with the seventh mode, each successive mode has one more half

wave. It is expected that this frame pitch will have natural frequencies

which are not grouped beyond the first six.

Figure 2.16 shows the mode shapes of the 12 inch panel. This is,

as expected, the transition length. The first four modes fall very close

together in frequency and the fundamental mode is neither pure stringer

torsion nor pure stringer bending. Even for this length, however, for

modes higher than the second the number of half waves increases one per

mode.

Figure 2.17 shows the 14 inch panel mode shapes. At this

length the behaviour has settled completely into that involving very long

frame pitches. The first mode has one half wave across the specimen

and this is incremented one per mode.

Figures 2.14 to 2.17 inclusive show that there is, indeed, a

change in the fundamental behaviour of the integrally stiffened panel

with frame pitch and that some care must be taken at the design stage

to ensure that the correct frequency and wavelength criteria are adopted.

Even when the stringer twisting mode precedes the stringer

bending mode in an integrally stiffened structure, the behaviour is not

exactly like that of the conventional structure. In a builtup stiffened

skin the natural frequencies tend to be somewhat higher than those of the

governing component of the lower bounding mode. That is, the stringer

torsional stiffness effect is greater than its inertia effect. In the

integrally stiffened skin the natural frequency tends to be lowered,

indicating that the inertia effect of the stringer is greater than its
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stiffness effect.

When the stringer bending mode appears first the natural

frequency is somewhat lower than that of the stringer alone. The skin

is now adding more inertia than stiffness to the stringer.

It has been stated that some modes will contain more than one

half wave between frames. Natural frequencies and mode shapes were

calculated for the panel with 22 inch frames and 2 half waves in the

length. These values are listed in Table 2.3 and they can be seen to

be exactly the same as those for the 11 inch panel with one half wave.

The mode shapes as well as the natural frequencies were also exactly

the same. Because of this there is little further to be gained from

an investigation in depth of the panel with multi-half waves in its

length and no further values were calculated.

25



III. THE VIBRATION CHARACTERISTICS OF BEAMS

TAKEN FROM AN INTEGRALLY STIFFENED SKIN

CROSS SECTION

Lyons (10) in a series of tests found that he could greatly

reduce the response of an integrally stiffened panel to single point

excitation by adding a narrow strip of damping material to the tops of

the stringers across the middle of the panel. In order to be able to

analyse the energy dissipation phenomenon it will be necessary to know

the energies and motions involved in the whole system. The natural

frequencies and mode shapes can be calculated for the panel using the

method of 11.2. When the mode shapes are known the kinetic and

potential energies can be calculated by making use of the relationships

of elasticity theory. This process, however, will be long and tedious

and it will be difficult to make general conclusions because the results

will be highly dependent on the interacting effects of different panel

parameters.

From the results of section II it is expected that in most

cases the integrally stiffened panel mode shapes will closely resemble

beam functions involving the total panel width, and that the majority

of the modes in the frequency range of interest will have only one half

wave in the length. Therefore, the damping material across the panel

centre line will effectively be in motion under the influence of a

vibrating beam. Since this is the case, a beam which is a narrow slice

of an integrally stiffened panel should prove useful as a model for

energy dissipation estimates in the calculations of the next section.

Such a model will add nothing to the understanding of the panel vibration

characteristics but should prove manageable enough to be able to draw

some general conclusions concerning the phenomenon taking place when

damping material is added to the tops of the stringers.

One other very real advantage of using a beam model for the

structure is the relative ease of obtaining controlled experimental con-

ditions for beams. This will prove useful in the quantitative verifi-

cation of the estimates made.
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The beam structure itself, however, must be analysed before

it can be used in energy dissipation calculations. It is expected that

the beam will retain some, but not all, of the features of the machined

plank. In the panel analyses the ends of the stringers were assumed to

be simply supported along the skin line. As a result, these stringers

were deformed in bending and in torsion along their length to conform

with the skin in displacement and slope. Therefore, they contributed

a great deal of stiffness. In the beam structure the stringers are

only as long as the beam is wide and they are not supported in any other

manner than through the skin attachment. The stringers will have no

tendency to bend along their length until their natural frequency as

free-free beams is approached. For a narrow beam and, hence, a short

stringer, this frequency is extremely high and the effect can be ignored.

In section II it was pointed out that the stringer cross section

can also distort, with the stringer effectively acting as a cantilever

about the skin attachment line. As in the case of the panel, the

stringer in the beam model is quite thick and the fundamental cantilever

frequency is well above the frequency range of interest. The stringer is

attached to an elastic member and not a rigid foundation. Hence the

coupled system natural frequency involving stringer distortion will be

somewhat lower than that of the stringer alone as a cantilever, but still

high enough for the effect to be neglected.

As a result of the above assumptions the stringers in the beam

model can be considered to be blocks of inertia with one finite dimension.

This places their effect out of the plane of the beam (skin) and makes

rotational effects important.

The natural frequencies for the beam model will be first calcu-

lated by an energy method assuming simple mode shapes. These will then

be compared with exact mode shapes and natural frequencies calculated

using a modification of the transfer matrix program of the previous

section, and their suitability for use in damping estimates assessed.
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III.1 Energy Method Using Simple Assumed Mode Shapes

For ease of analysis the energy method calculations will be

made for a simply supported beam. It has been shown in Section II that

for most practical lengths between frames an integrally stiffened skin

has mode shapes which closely resemble beam functions involving the

whole width. It may be possible, with reasonable accuracy, to consider

the centre section of the plate with simply supported edges, and hence

the simply supported beam model, to have the mode shape

w = w sin nry sin wt (3.1)
o L

where L = [ b. of Section II.

The case analysed was an N span beam having M stringers where

M = N + 1 or N - 1 (with or without a stringer at each end respectively).

The stringer spacing was assumed constant and it was assumed, as in the

panel calculations, that the stringers remain perpendicular to the skin

and that they do not distort.

Since the stringers do not bend in either plane, the total strain

energy in the system is contained within the bending beam. This total

strain energy is given by the expression

T = EI fL(w,,)2 dy (3.2)m 2f

0

(ref. 16, for example).

For the assumed mode shape this can be shown to be

T EIn w 2sin2 Wt (3.3)
M. 4 L3  0

The total kinetic energy is made up of contributions from the

beam and each of the stringers.

The kinetic energy of the beam is given by
L

vb= fŽ J(*)2dy (3-4)vb= 2
0

28



and this is equal to

Vb = c2 2 w02 os 2 t (3.5)

If stringer i is at location y., then the transverse trans-
1

lational velocity of that stringer will be '. and the translational1

kinetic energy will be

Hph d

vt. = 2(3.6)
1

where h is the stringer thickness.s

The total translational kinetic energy for all the stringers

will be

Hphsd M
Vt =(2 (3(7)vt 2 i=l

This can be shown to be

Hphs d 2 2 2 M 2 nirYi
vt 2 ww cos wt sin (3.8)2 i-i L

Each stringer is also rotating about its line of attachment to

the skin, and the kinetic energy associated with this is given by

v pdh sH3 62(39

= 6.~ i

When the value of 0. is substituted and the sum over all stringersi

taken

pdhs H3  n 2_ 2 2 2 2 n•yi
v = L2 wn 0 cos Wt Cos L (3.10)

Lil

For resonance (stationary total energy) the maximum kinetic

energy in one cycle equals the maximum potential energy. The kinetic

energy is a maximum when cos wt = 1 and the potential energy greatest

for sin wt = 1. w 02  is common to equations (3.3), (3.5), (3.8) and

(3.10) and cancels. The relationship for resonance is given by
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Eln 4
I

4  = pL 2hd HpLh dw2 2  .2 n1Ty4 3 + 4 si ML nY4 [

+ 2 2 M 2 nryi
3H2 n Cos (3.11)
3L= L

This can be rewritten

44 2Hh M nrTy. 2H3h M n7yE 2 [+ s sin 2  1 s 22 Cos]=• : 2[1+ - S si _- + _-__ •co

phdL L h

(3.12)h 4w4Es H n 4 T.EI 2Define -h = a and (-) = f, and note that phdL4 (3.13)

where won is the natural frequency of the n mode for the beam without

any stringers. (Reference 17, for example.) Equation (3.12), after

some algebraic manipulation becomes

S(a2n22 M 2  niry( )2 1 + 2a [+) Cos (3.14)
i=l

In equation (3.14) the frequency has been written as wNn, which is theth
natural frequency of the n mode for the beam with M stringers.

In Appendix I it is shown that for the internal stringers

M 2 ny in
cos = N - i for N an integer (3.1 4 a)

M 2 n7TYi N n
and [ cos L - - 1 for a not an integer. (3.14b)i=L 2 N

When there are stringers at the ends of the beam, the contribution
to the summation from the end stringers is cos 20 + cos2 nf = 2.0.
Therefore, whether n/N is an integer or not the summation with end
stringers is 2.0 greater than the summation without. Equation (3.14)

can then be rewritten for each case of interest. For n equal to an
N
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integer

(0on2 2 + 2Mt 83n2 2 (3.15)

3315

whether there is a stringer at each end or not.

For n/N not equal to an integer and a beam without a stringer

at each end (M = N - i)

Won 2 i + NO + a 3 n 2if2 (N - 2) (3.16)
( Mn 3

For n/N not equal to an integer and a beam with stringers at each

end (M= N + 1)

"(on 2 =1 + Naw + a3n ff (N + 2) (3.17)wMn) 3

Equations (3.15), (3.16) and (3.17) were used to calculate

natural frequency ratios for various configurations of the beam with the

parameters listed in Table 3.1. The ratio wMn/won is shown in Figure

3.1 for the beam with and without stringers at each end.

Equation (3.13) was used to calculate w and these valueson

were then substituted into (3.15), (3.16) and (3.17) to obtain the

derived natural frequencies of the beam with stringers. These values

of WMn are listed in Table 3.2.
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111.2 Transfer Matrix Analysis

111.2.1 Concepts and Derivation

In order to be able to use in subsequent damping analyses the

mode shapes assumed for the energy method calculations, it is necessary

to verify that the results of Section III.1 are a reasonable approximation

to the true solution. To do this the transfer matrix method, as briefly

outlined in Section 11.2.1, has been applied.

The beam geometry of Section III.1 is considered and it is

again assumed that the stringers remain perpendicular to the skin and do

not bend or distort. The equation of each span is given by the general

beam function,

Yi = A1 cosh kiy + A2 sinh kiY + A3 cos kiy + A4 sin kiy (3.18)

where l2k. k b ( E_ )Q 
(3.19)k. : iEh.2

and 1

y (y- • b) (3.20)
i g1 g

The notation used is that of section 11.2.1 with the exception that

there is no x coordinate or variation in the x direction.

The various transformations described in 11.2.1 are made to

arrive at a matrix equation relating displacement, slope, moment and

shear force at the right edge of the span to the same quantities at the

left. That is, the state vector at y = 1.0 is related to the state

vector at y = 0.

This can be written

{Z(1)} = [Tspan] (Z(O)} (3.21)

[Tspan] is the total field transfer and involves known geometric,

trigonometric and elastic constants.

The analysis at the stringers amounts to writing down the

simple equations of continuity and equilibrium. The following sketch
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shows the notation and sign convention.

skin M Mr skin

e de
dt

stringer

z

The subscript "9£" denotes left and "r" denotes right.

By equilibrium of forces and moments

Q - r -- pHh ws
=s

and per unit width (3.22)

M -M -PIs

By continuity

W = wr

and (3.23)
O£ =0e

£r

Combining equations (3.22) and (3.23) results in

{Z r} = [Tstrl {Z} (3.24)
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where [T str] is a known matrix.

Equations (3.21) and (3.24) can then be used across successive

stringers and skin spans to set up a chain of transfers to carry the

calculations right across the total structure.

For any end conditions two of the values at each end will be

known. The result is that in the total transfer matrix there is a sub-

matrix which must have a zero determinant for a solution to exist. The

frequency at which the determinant becomes zero is then the natural fre-

quency, and when this is substituted back into the individual transfers

the state vectors (displacements, slopes, moments and shear forces) are

obtained. These are the normal modes.

The program of reference 14, using the Gaussian elimination

method, was suitably modified for use in the beam analysis. It was

written such that there was always considered to be a stringer at each

end of the beam. This allowed the general solution to be obtained, and

if the solution for the case with no end stringers is desired the suitable

parameters can be set to zero.

Because of the assumptions made, the program is written with

each stringer considered to be only a mass with finite dimensions. However,

in the point transfer or stringer effect analysis it would be a relatively

easy task to include linear and rotary spring forces. This would, in

effect, give the solution to the beam on many elastic supports with added

inertia at the supports. Letting the inertia terms go to zero would give

the case of a simple beam on many elastic supports. Similarly, a beam

on elastic supports with added inertia between supports could be treated

by considering each support or mass to be a stringer with the suitable

parameters.

111.2.2 Transfer Matrix Calculations and Comparison with the
Energy Method

The method and computer program were first tested by letting all strin-

ger parameters go to zero. This, in effect, should yield the solution

to the simple beam problem. The calculated natural frequencies are listed

in Table 3.3 together with the natural frequencies calculated by reference
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18 for the same beams. The agreement between the two is close enough

to inspire confidence in both the technique and the computer program

used to make the iterations and calculations.

The program was then used to calculate the natural frequencies

and normal modes for the beam with stringers. The values were computed

for the simply supported and fully fixed beams with. 5 and 7 stringers.

As expected, the presence or absence of stringers at the ends made no

difference to the frequencies or mode shapes of the fixed end beam. The

calculated natural frequencies are shown in Table 3.2. The transfer

matrix calculations are also summarised in Figure 3.2.

Figure 3.2 can be compared with Figure 2.11, which shows the

same quantities for the stiffened panel. In the region where the

natural frequency of the panel was raised above that of the unstiffened

one, the effect of the stringers on the beam natural frequency is

relatively small. In the panel the stiffening effect of the stringers

predominated and this is absent in the beam. When the stringers began

acting to depress the panel natural frequency they were beginning to

have a greater mass effect and were also beginning to influence the

mode shapes. This also occurs in the beam, and this is the point at

which the simple sinusoidal modes begin to be less useful and accurate

as an approximation to the true mode shapes.

From Table 3.2 it appears that the simple energy method approach

of Section III.1 gives reasonable results for about the first 5 modes.

The mode shapes obtained by using the computer for these modes are shown

in Figure 3.3(a) and the bending moments in 3.3(b). The mode shapes

are virtually indistinguishable from simple sinusoids, but the bending

moments give a good indication of when the two methods begin to disagree

appreciably. The bending moment for the assumed sinusoidal mode shape

of a simply supported beam is also sinusoidal. Thus, when the true

bending moment begins to vary appreciably from a sinusoid the approxi-

mation will be seriously in error.

From Figure 3.3(b) it can be seen that the bending moment for

the first four modes has approximately the right form for good agreement.

Mode 5 shows some deviation, but is probably still useful. Mode 6 is
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already different enough to make the use of the simple mode shapes very

doubtful.

The natural frequencies and mode shapes were also calculated

for beams with different skin thickness. These results are plotted in

Figure 3.4. The thickness was not taken to be less than 0.05 inches

because the stringer geometry was kept constant and it was felt that

any thickness less than this would not be practical with a stiffener of

the given size. The stringers, of course, affect the thin beams more

than they do the thicker ones, as shown by the dependence of equations

(3.15), (3.16) and (3.17) on a, but even in the thinnest considered

the first four modes had bending moment distributions which would enable

the sinusoidal mode shape assumption to be used with reasonable accuracy.

Figure 3.5 shows the same information as 3.4, but the

independent variable is now the mode number. Figures 3.4 and 3.5 by

their smooth and continuous change show that there is no effect taking

place in the beam similar to the fundamental mode shape change which

took place in the panel and became evident in Figure 2.13. This was

expected because of the absence of the stringer stiffness terms.

If the thickness were allowed to decrease still further, the

stringers would undoubtedly have so much effect as to change even the

low order mode shapes, but this was felt to occur at such a low value

of h that it was not investigated further.
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IV. DAMPING TREATMENT AND ANALYSIS

It was shown in Section II that in most cases of interest an

integrally stiffened panel will have mode shapes which resemble beam

functions over the whole width. In Section III an analysis was carried

out for a beam with the integral stiffeners acting as added inertia, and

it was found that for the first few modes of the simply supported beam

the simple sinusoidal mode shapes are a good approximation to the exact

functions. It is now necessary to investigate some damping treatments

and their behaviour when applied to the beam vibrating in the assumed

modes.

Lyons (ref. 10) mounted the panel of Figure 2.5 in a steel

framework and excited it harmonically at a single point (indicated in

the Figure) by an electrodynamic vibrator. This was carried out with

no added damping and also after the application of each of the three

treatments shown in Figure 4.1. The frequency response was determined

in each case and the damping of the major peaks was measured. The width

of damping material added across the tops of the stringers (Figure 4.1(b))

was also varied. The damping material used for these tests was LD400

(Lord Manufacturing Company). The density of this material is about

0.0577 lbs per cubic inch. The elastic properties are not accurately

known and they vary rapidly with temperature and somewhat with frequency,

but at room temperature and over the range of frequencies of interest,

values of Ed of 7 x l05 lbs per square inch and n d of 0.6 are

reasonable. The thickness used was 0.060 inches in these experiments.

The frequency response curves obtained are shown in Figure 4.2,

together with the measured damping of the peaks. The reduction of the

peaks shown by this figure is quite remarkable in the light of the small

mass addition which has been made in some of the cases. There is no

curve shown for the damping treatment illustrated in Figure 4.1(c) because.

there was no significant difference between this treatment and that of

4.1(b).
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A summary of the results of these single point excitation

tests is given in Table 4.1. The RMS values were obtained by summing

over the whole of the frequency response curve in the frequency range

of interest.

It is interesting to note from Figure 4.2 that a strip of the

damping material only 1 inch wide bonded to the tops of the stringers was

somewhat more effective in reducing the response than a strip some 20

times wider bonded to the inner skin surface between stringers, and

this phenomenon warrants further investigation.
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IV.l Analysis of the Damping System

The damping treatment of Figure 4.1(a) has been well documented

in the literature. This is an unconstrained damping layer and has been

analysed in references 20, 21, 22 for example, for beams and plates. In

this configuration the energy loss depends upon the ratios of flexural

stiffness of the structural material and the damping material and also on

the location of the neutral axis of the composite system. Since the

integrally stiffened skin will normally vibrate in modes resembling flat

plate modes the neutral axis will be somewhere in the skin. As a result

the unconstrained damping layer will be close to the neutral axis and

relatively inefficient. This is borne out by Figure 4.2 and Table 4.1.

The treatments shown in Figures 4.1(b) and (c) will be a com-

bination of the viscoelastic link effect as discussed by Jones (23, 24)

and the tuned damper effect discussed and analysed by Henderson (25) and

by Jones and his associates (26 to 29). The treatment of 4.1(c) might

be fairly closely related in behaviour to the systems of references 25

to 29, but the masses would then have to be quite large in order that

the damping beam will tend to act only as a viscoelastic suspension for

the masses. The treatment of 4.1(b) most clogely resembles that of

reference 29, but there is a distinct difference. In reference 29

Nashif and Jones considered the energy dissipated by the motion of the

ends of an elastic beam. In the case being considered here the energy

is being dissipated throughout the whole of a beam of viscoelastic

material.

The damping material bridging the stringers, whether or not

there are added masses, will behave as a continuous system in its own

right forced to vibrate by the ends of the stringers to which it is

attached. The transverse vibration of the damping beam will certainly

be influenced by the extensional excitation also exerted by the stringers

as they rotate about the skin line. However, the solution of the problem

of the simultaneous transverse and longitudinal vibrations of a heavily

damped beam excited by known motions of the ends was considered to be

far too complex and rather unnecessary at this stage.
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The energy dissipated in a viscoelastic material is proportional

to the elastic energy contained in the material. When the damping material

is added to the stringers, it will add both mass and stiffness to the

original structure. The former lowers the natural frequency and the

latter raises it, but only in proportion to the amount by which they

change the kinetic and strain energies respectively. If the addition of

the damping material influences the total kinetic or strain energy of the

system to a great extent then it is no longer the same system with a

small addition but rather it is an entirely new system, and the basic

structural analysis of Section III no longer applies. Therefore, in

order to calculate the strain energy in the damping material it is

assumed that the addition of the viscoelastic damper to the tops of the

stringers affects only the amplitude of vibration and not the natural

frequencies or mode shapes of the integrally stiffened structure.

The fact that the peaks in the response curves of Figure 4.2

for the damped and undamped panel fall at approximately the same frequency

tends to justify this assumption. It is not conclusive proof because the

mass and stiffness effects could be just balancing, but it would be

fortuitous for this to be the case for all the frequencies and modes

involved.

A further assumption made in the damping treatment analysis

is that the extensional and flexural effects can be treated separately.

The energy dissipated by each effect will be calculated and this will be

added to the base structure energy loss to evaluate a total dissipation

and overall loss factor.
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IV.2 Extensional or Link Analysis

The extensional effect is quite straightforward to analyse if

some further assumptions are made. It is assumed that the frequencies

involved are low enough that longitudinal wave effects can be ignored.

That is, the whole of the damping material between adjacent stringers is

considered to be in a state of uniform axial stress or strain.

For viscoelastic materials subjected to steady state harmonic

strain a good representation of the stress strain curve is given by an

ellipse. It can be shown that a material whose modulus of elasticity

is complex, i.e., has a real and imaginary part, conforms with this

behaviour. The method of analysis used in the literature, therefore,

is the same as that for purely elastic materials with a complex modulus

substituted for the real quantity.

Let the extensional stiffness of the damping material between

adjacent stringers be represented by K* = K(l + in d) and the elongation

by 6. Then the extensional force required is K(l + ind )6. This
"complex" force applied at the stringer tip parallel to the skin applies

to the skin a moment which is added to the stringer inertia term. The

force is designated "complex" because it is not in phase with the dis-

placement, and the out of phase component contributes the energy dissi-

pation capability. The magnitude of the moment due to this force will

depend on H, the stringer depth. The magnitude of 6 will be propor-

tional to H and to the change in skin slope between adjacent stringers.

For a material in extension or compression

K ddd (4.1)

It will later be convenient to have all force and energy quantities in

terms of the damping beam flexural rigidity, EdId, where

d d E db hd 3  (4.2)

Ed 12 ddd

Therefore, write

12EdId

E bdhd = 2d ( 4 .2(a))
hd
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and K = l2EdId (4.3)
hd29

The energy dissipation in a system with damping characterised by

a complex modulus can be calculated from the expression (ref. 30)

Energy dissipated per cycle (4.4)
Maximum energy stored during the cycle

Ungar (ref. 31) gives the relationship between strain and strain energy

for a system in extension as

AT = kld (4.5)de klI
where ATde is the extensional strain energy per unit length,

j ej is the modulus of the strain phasor and k is the extensional
stiffness (real part) per unit length. Since it has been assumed that

the strain is uniform throughout, and the material cross section is uni-

form, the total extensional strain energy is

Tde = 2 K 1612 (4.6)

Substituting for K (eq. (4.3)) gives

6Edld

T dId 1612 (4.7)
de h 2 z

This strain energy must be summed with the flexural strain

energy in the damping material to give a total from which the energy

dissipation can be calculated.
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IV.3 Flexural Analysis

To determine the flexural behaviour of the damping material

analytically, the equations of motion must be solved. The beam is

considered to be undergoing steady state forced harmonic transverse

vibration. However, the forcing functions are applied at the ends in

the form of known translations and rotations and will enter the solution

as end conditions.

The Euler-Bernoulli equation with the force equated to zero

describes the motion of an element of a beam undergoing transverse

vibrations with no external force applied to that element. This is

exactly the case of the beam excited at the ends only (all forces and

moments are applied at the ends only and not on internal elements) and

the end translations and rotations will be used as some of the boundary

conditions necessary to solve for the unknown coefficients in the solution.

The standard procedure of replacing the real flexural rigidity

by the corresponding complex one Ed I d(1 + nd ) is also adopted and the

equation of motion is

14_d 'w d2 w
EdId(1 + i d) w = -_d -dt (4.8)

dddy dt

The usual assumption that w = Ye leads to the solution

Y = 1 cos cy + B2 sin y + B3 cosh 4lr + B 4 sinh 4y (4.9)

where X = x(l + ind)-. (4.10)

The values of the coefficients are determined by substituting the end

or boundary conditions.

The damping material could be attached to and excited by a

stringer at one end only or at both ends. These will give different

coefficients and must be treated separately.
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IV.3(a) Cantilivered treatment

When the damping material is bonded to only one stringer it

is acting as a cantilever. Consider the stringer to be at y = 0,

(damping beam coordinates). Then

dw d Y= 0 at y = k (4.11)

dy2 dy2

and

d w- 0 at y= Z (4.12)

dy3 dy3

At y = 0 we have

w = w(O)

and dw 6 = (4.13)
dy

These are known quantities from the structural beam mode shape, which is

assumed unchanged. Substituting (4.11), (4.12) and (4.13) into (4.9)

and its derivatives, leads to the following solution for the coefficients:

B L + co ,i cosh = 2 .1[eocos 2.- ow(O)sin 0y][cosh *£ + cos Oi]

- [Ow(o)cos *2 + e(O)sin ok][sinh Ok - sin ox]} (4.14)

B3 Lcosh *2. + cos Eo] [pw(O)cos 4Z + 6(O)sinJ£ - B4 4(sinh O£ + sin 0z)]

(4.15)

B2 e(o)- B4 (4.16)

B1 = w(O) - B3 (4.17)

This method of solution is similar to the inverse method described

by Jones in reference 22, and the end force and moment required to sustain

the motion can be calculated. The system is linear, and for ease of
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calculation Edd dy2 and EdI dk2, which are the moment and forced y2 dddy2
exerted (by the stringer on the damping beam and vice-versa) were com-

puted for w(0) = 1.0 and 0(0) = 0 and then for w(O) = 0 and e(o)
= 1.0 as separate cases. These can then be added in any ratio by the

theory of superposition. In order to have values for a range of fre-

quencies (X) and loss factors, the equations were programmed for a

digital computer. Curves of the modulus of the force required to

maintain unit translation and unit rotation are shown in Figure 4.3.

Similar curves for the moment are in Figure 4.4. The phase angle of

the moment for the cantilever excited by translation only is shown in

Figure 4.5. Similar curves exist for the other three sets of curves

of Figures 4.3 and 4.4 but are not shown.

An examination of Figures 4.3, 4.4 and 4.5 begins to show why

this form of damping treatment is effective. For all but the very low

frequencies (small X) the forces and moments exerted on the stringers

are quite large. Also, the phase angle is not zero and hence energy

dissipation takes place. Unlike tuned dampers, however, the effect

spreads over a wide frequency bandwidth because of the multi-modal

behaviour of the damping materials. This last fact also begins to ex-

plain why the treatment of figure 4 .l(c) was no more effective than that

of 4.1(b). At the frequencies involved, the value of X is well above

the point in the curves at which the forces and moments have become

quite large and the damping beam undergoes considerable transverse

flexural motion. An added mass would slightly displace the peaks and

troughs in the curves along the frequency axis, but the total effect

must be quite small for any reasonable mass addition.

The effect of increasing the loss factor is that of reducing

the variations of the force and moment curves. Effectively the modal

overlap is increased. Even for the fairly low value of 0.2, however,

the excursions are not too severe and the method is useful.

A form of reciprocity behaviour can be seen in Figures 4.3 and

4.4. The moment required to maintain unit displacement is the same as

the force required to maintain unit rotation. The phase angles too,
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have the same form but differ by 180 degrees.

In Figures 4.6 and 4.7 are shown typical displaced shapes of

the damping material beam for a loss factor of 0.6 and for various values

of X. These further reinforce the conclusion concerning the multi-

modal behaviour of the damping beam.

IV.3(b) Beam Excited at Both Ends

If each end of the damping material beam is bonded to a

stringer the coefficients of equation (4.9) will be determined by

known displacements and rotations at y =0 and y =k

At y = 0, w = w(O) and 0 = 0(0) (4.18)

At y = k, w = w(k) and 0 = 6(k) (4.19)

Following the same procedure as in Section IV.3(a) leads to

the coefficients:

B 1 cs{(Z) + ýw(O) sin ýZ - e(o) cos pk]B4 =2ýLi - cos ý£ cosh ¢£]

x [cosh ýk - cos ýZ] - [sinh ÷k + sin ][pw(9)

- ýw(O) cos ý£ - e(o) sin ý£]} (4.20)

1

B = ¢Lcosh € - cos ý] [4W(£) - pw(0)cos 4£ - 0(O)sin ýk

- pB4 (sinh 4Z - sin ti)] (4.21)

B e(O) B (4.22)
2 - 4

B1 = w(O) - B3 (4.23)

The values of moment and shear were calculated taking one end

condition at a time to be non zero. In this case it is necessary to

compute the force and moment at each end due to the excitation at each

end.

In Figures 4.8 to 4.11 inclusive are shown these quantities

considering excitation at one end only. As in the cantilevered beam
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the phase angle is, in general, non zero. This again implies forces

and moments which are not in phase with the displacement and hence

energy dissipation capability. Two of the calculated sets of phase

angle curves are shown in Figures 4.12 and 4.13. These are typical

of all the others of the same type.

A comparison of Figures 4.3 and 4.8 and of 4.4 and 4.9 reveals

that for a given excitation the force and moment at the excited end are

very similar despite the different conditions at the other end of the

beam. The phase angle curves of Figures 4.5 and 4.12 are also very

similar. This implies that most of the energy which is fed into the

ends of the beam is, in fact, dissipated and that very little of it is

reflected back from the opposite end. This is highly desirable and

points to good structural vibration damping capabilities.

The fact that the forces and moments at the forced end are

similar whether the other end is fixed or free does not imply that the

two systems will have the same flexural effect in practice. It must

be remembered that when the beam is attached to stringers at both ends

these will both undergo translations and rotations. From Figures 4.10

and 4.11 it can be seen that the opposite end to that excited does have

a force and a moment exerted on it and this will modify the overall

effect. The total vibration of the beam will be determined by the sum

of effects of the two ends and may be different from the cantilevered

case.

From Figures 4.10 and 4.11 it can also be seen that the more

lightly damped beams exert more force and moment at a given distance

from the excitation. This is to be expected because the flexural waves

are not attenuated as much as they travel from one stringer to the next.

In Figures 4.14 and 4.15 are shown some displaced shapes of

the beam attached at both ends but moving at one end onlyfor comparison

with 4.6 and 4.7. From these it can be seen that despite the fact

that the forces and moments are similar the shapes are quite different.

They would differ even more if the other end were moving.

With the capability of calculating the deflected shape of the
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damping beam it is now possible to compute the maximum flexural strain

energy, Tdf, and this is done in the next section.

Before carrying on with the flexural strain energy calculations,

however, it is of interest to look at the limit of the expressions for

w as the parameter * goes to zero. This is, in effect, the same as

X going to zero and hence w becoming very small. An attempt was made

to do this using the computer program, but since the coefficients are

calculated first and these were all singular, the technique failed.

Therefore, a limit analysis has been carried out in Appendix II, to prove

that the results do, indeed, have the static beam solution as a limit.
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IV.4 Total Strain Energy and System Loss Factor

Ungar, in reference 31, gives an expression for flexure

similar to equation (4.5) for extension, and the total flexural strain

energy in the damping beam is then given by

Tdf E d Id t I ['7-2•y (4.24)
S20 dy

Equation (4.9) with the values of equations (4.14) to (4.17) or (4.20) to

(4.23) for the coefficients becomes far too unwieldy to differentiate

twice, take the modulus and square in closed form. The digital computer

was again programmed to calculate the shapes and integrate numerically

using the trapezoidal rule.

The total strain energy in the damping beam is then

T =T + T = 121612 + j,__j 2 dy (4.25)d de +Tdf 2 dy 2dd dy

and the energy dissipated per cycle, ld' is given by

•d = 2 rn d Td (4.26)

Since there will be more than one beam of damping material in a multi

span structure, *d in fact, will be a summation over all spans.

It was shown in Section III that simple sinusoidal mode shapes

adequately describe the first few modes of a simply supported beam. To

avoid confusion with damping beam displacement notation, write

v = vv sin L (4.27)

for the base material mode shapes, where x is the linear coordinate in

the beam length. Then the displacement and slope can be written

explicitly for each stringer and hence w(0), 6(0), w(k) and O(k),

are known for each damping beam. To keep the solution more flexible the

end fixity of each damping beam could be chosen during computation and

two cases were evaluated.
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The first case considered the six span beam of Table 3.1 with

double cantilevers of LD400 bonded to stringers 2, 4 and 6 (stringer

notation of Figure 2.6). These damping beams considered were 3 inches

long (on each side of the stringer), 0.5 inches wide and 0.08 inch

thick. The values of Tdf were calculated for the first seven struc-

tural beam modes for three values of loss factor and a range of X. The

curves are shown in Figure 4.16 for a damping beam loss factor of 0.6.

Calculating each mode over a range of frequencies enables the graph to

be used for any frequency as long as the mode shape is approximately

right. For example, the simply supported beam has a fundamental fre-

quency of about 40 Hz and the simply supported panel with 22 inch frames

about 250 Hz. The structural mode shapes are about the same, however,

and the same curve can be used by choosing the appropriate X.

The cantilever mode shapes calculated in this way for two

values of X for the fundamental and second modes of the structural beam

are shown in Figure 4.17. This figure shows quite clearly that the same

basic mode can excite quite different damper response for different

values of frequency.

The second case was that of a strip of damping material 1 inch

wide and 0.060 inch thick joined to all the stringers. The values of

Tdf were calculated and are shown in Figure 4.18 for the first seven

modes. The mode shapes for the damping beams were also calculated and

these displayed typical multi-modal behaviour and are not shown.

To be able to use the flexural strain energy calculations to

evaluate the system total loss factor it is necessary to relate the

energies stored and dissipated by the various components. Although

the metal base structure will have a relatively small loss factor, it may

not be negligible and should be included in the calculations. Assume

this loss factor is nm and the maximum strain energy is Tm. Then im9

the energy dissipated per cycle in the metal beam, is

*m = 2mTm T (4.28)

But the total energy dissipated in the system is im + ýd and the

total strain energy is Tm + Td. Therefore, the total loss factor nt
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can be found from equations (4.26) and (4.28) to be

27nrt[T + T = 2Tnm T + 2Tnd T (4.29)

or

_t + +11 (4.30)nd= T m nd T d .0
-- + i -+i

T d Tm

For the simple sine modes assumed,

44
T n Elv 2 (4.31)m 4L 3  o

From equations (4.14) to (4.17) and (4.20) to (4.23) it can be seen that

each of the damping beam coefficients will be linear in vo. Similarly

6 will be linear in v • Therefore, both Tde and Tdf will contain2 0 2def
v and in the ratio T d/Tm the v terms will cancel. Thus, v0  can

be set to unity without loss of generality.

Only the system with the damping beams attached to all stringers

can have an extensional effect. This was considered first. Tde can be

calculated for each mode by calculating the slopes at adjacent stringers

and using the difference to calculate 6, which is then used in equation

(4.7). The individual strain energies calculated in this way are listed

in Table 4.2. The values were only calculated for the first five modes

because of the conclusion drawn in Section III concerning the suitability

of sine modes for more than that number.

The frequencies used to determine X for use in conjunction with

Figure 4.18 to obtain Tdf were the relevant ones from Table 3.2. (For

mode 1 the experimentally observed natural frequency was used.)

The values of nt were not calculated for the beam with the

damping material attached to each stringer because the very high extensional

strain energies listed in Table 4.2 show that this system invalidates some

of the original assumptions. Here Tdf << Tde and

T d E EdlId4

T- EI x 10.
m

51



Unless Td/Tm is considerably less than 1 there is so much energy

contained in the damping material that the mode shapes and natural fre-

quencies are certain to be affected. In the present system, EI = 70Ed Id

and therefore the assumptions of unaffected mode shapes and natural

frequencies are invalid. This in fact, was verified experimentally. A

much smaller strip of damping material than that used in the calculations

(about 0.06 inch by 0.06 inch by 18 inches) was bonded to the test

specimen and this reduced the response to the extent that it was almost

impossible to find any peaks. Those that were found were not at the

same frequencies as those of the undamped beam.

This does, however, explain why the system is so effective in

the case of the panel. Experimentally it had been verified (Figure 4.2)

that the fully fixed treatment did not seriously affect the natural

frequencies. The calculations were not made for the panel, but Tm
for the stiffened skin is several orders of magnitude higher than for

the beam. The assumptions are then valid and large amounts of energy

can be dissipated, leaving the system otherwise undisturbed.

The fact that the extensional effect is so much greater than

the flexural also explains fully why treatment h.l(c) was no more effect-

ive than 4.1(b). Even if the masses seriously affected the flexural

behaviour, they do not affect the major contributor, the extensional

effect.

The system with three double cantilevers does not have any
extensional effect. The values of Tm in Table 4.2 will still apply

and the values of Tdf were taken from Figure 4.16, again for the first

five modes. In order to be able to calculate nt it is necessary to

know %. This cannot be determined theoretically and the values were

measured experimentally (see a later section) and were assumed not to

change when the damping was added. These were then used in equation

(4.30) to give nt. These results are listed in Table 4.3 for various

cantilever configurations. The expected values of nt are much higher
than the measured values of %m in all cases and thus even the vastly

less effective cantilever system is extremely beneficial in adding damp-

ing. The values are still of such a magnitude, however, that it is
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expected that the original assumptions are valid, and this will be shown

experimentally.

In table 4.3 the added weight expressed as a percentage of the

structural beam weight is also shown. The values indicate that the

damping is increased far more than the weight.
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IV.5 Shear System and Adaptation of Analysis

The material used in the bulk of the experimental work and

whose properties were used in the analysis has extremely good damping

and elastic properties, but only at room temperature. In practice, a

supersonic aircraft, for instance, might require the use of a material

with substantial damping and strength up to 150 C. Similarly, cold

climate take-offs and high altitude subsonic flight demand a temperature

capability down to -40 0C or lower. Moreover, aircraft applications

demand a resistance to hydrocarbon fluids of various sorts.

One material which meets these conditions is silicone rubber.

However, it is a low modulus material and will have to be utilized in

shear in either a sandwich or otherwise constrained configuration.

A technique was devised to manufacture a sandwich type of

beam damper and attach it to the integrally stiffened structure as

shown in Figure 4.19. The segmented inner sandwich skin was bonded to

the stringer tips.

This system is amenable to the foregoing analyses with only

minor modifications. The transverse vibration characteristics of sand-

wich beams is quite well documented in the literature (references 32, 33,

34, 35), and it is possible to compute an equivalent EdId and nd for

the laminated beam. These can then be used directly in the equations of

transverse vibration of the bomogeneous beams.

Similarly, an extensional stiffness can be calculated by using

6 to determine the shear strain and hence the shear force. This value

can then be used to calculate T de. In this respect, however, one pro-

blem arises. The upper sandwich skin is not anchored and so the shear

strain will depend on the relative motion between the lower segments and

the upper skin. In Appendix III it is shown that for the sinusoidal beam

modes and a beam with equal stringer spacing the upper skin is effectively

anchored in space (in a longitudinal direction). Thus the calculation

of the shear strain is quite straightforward.

The extensional stiffness of the shear system (shear layer of

thickness, t, shear modulus G, length Z/2) is

Gbd£~

K = d (4.32)
2t
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and the elastic shear strain energy is

Gbd2£

Tds = dt 1612 (4.33)

Recall equation (4.1) and compare it with (4.32). For the

material in tension K was proportional to the thickness. For the

shear system the stiffness is inversely proportional to the shear layer

thickness. In the shear system, for a given 6, a thinner layer will

result in more energy dissipation, and the shear system makes more

efficient use of the damping material. This, however, must be used

with caution, because the shear strain is also inversely proportional

to the thickness for a given total extension, and excessive strains

will result if the material is made too thin.

No attempt was made to optimise the shear damping configuration,

although it is probably possible to do so.
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V. METHOD OF DETERMINING DAMPING MATERIAL PROPERTIES

It was stated in the previous section that the bulk of the

experimental work for this report was carried out using the damping

material LD400 of the Lord Manufacturing Company. This material has

a value of Ed equal to approximately 7 x 105 lbs per square inch,

Pd of 0.05777 lbs per cubic inch and nd of about 0.6. These properties

are of the right magnitude to make the material very useful, but they

apply only in a very narrow temperature bandwidth centred at room

temperature. For aircraft applications it would be preferable to have

a material with better temperature characteristics, even if the loss

factor is lower.

One such material which might be useful is silicone rubber or

one of its derivatives. The fluorinated silicone rubbers have extremely

good resistance to typical fluids to which they might be exposed in

aircraft service, have reasonably good temperature characteristics and

appear to be quite "lossy". An embrittlement temperature of minus 60

or 70 degrees centigrade and useful strength to 200 degrees centigrade

for short periods are typical properties.

There is, however, very little in the literature concerning

the dynamic properties of these materials and their variation with tempera-

ture, frequency, material composition, strain magnitude, cure times and the

other variables which influence their behaviour (Ref. 36, for example).

Moreover, these materials tend to have very low moduli and hence they

will almost certainly have to be used in shear. It is, therefore,

preferable to measure the shear properties for a range of parameters.

There are many techniques in the literature for measuring the

damping properties of materials and each has its advantages and disad-

vantages. Some recent methods are given in References 37 to hl. Nashif

(38) describes a variation on the coated cantilever method first suggested
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by Oberst. This method measures the tensile properties and is better

suited to relatively stiff materials.

Cannon and Nashif (40) have developed a method for soft

materials, but again the properties in extension-compression are

measured. This method is also a resonance technique and hence involves

a mass change to measure the properties over a range of frequencies.

The method of Adkins (37) and the shear method of Grootenhuis

(ref. 39) appear to be suitable for use with silicone rubbers. However,

the method of McConnell in reference 41 appears most attractive. Some

of the derivation is repeated here because there appears to be an error

in the reference.

The method is based on an electronic "mass change" and has the

advantage that the only phase angle which must be measured is the rela-

tively easily measured one of -. It is a resonance technique which does
2

not require a physical mass change. Fig. 5.1 is taken from reference

41 and shows the block diagram of the electronic system. This applies

to use with a single degree of freedom system with mass, M, force P,

displacement x, and stiffness, K(l + in). The equation of motion for

the system is

MR + K(I + in)x = P(t) (5.1)

If there is no feedback, the steady state solution when

P(t) = P e
0

is given by
iwt

xX e~
0

where

0 [ - Q]2) i

X = K (5.2)
[(i 01•)2 + T21

where -= WV M (5.3)
5 Kn
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at resonance 0 = 1, and the loss factor is

P

acceleration amplitude x M (5.4)

The stiffness can be calculated easily from

K = w2M (5.5)

Thus, any system which enables "resonant" measurements to be taken at

any frequency will be very useful.

In Figure 5.1, G(s), Gf, Gx are amplifier transfer functions

which operate on the excitation voltage, the force signal and the accelera-

tion signals, respectively. Sx and Sf are acceleration and force

transducer sensitivites.

The excitation voltage (from an oscillator for example) is

E(t) = E eiWt (5.6)
0

Subtracted from this is the feedback voltage due to the force and

acceleration. The net excitation voltage is then

Ee = E(t) - Ef (5.7)

But

Ef = ef + ex = SfGfF + SxGx R (5.8)

Therefore

Ee = E(t) - SfefF - SxGx K (5.9)

and

F = E eG(s) (5.10)

is the force generated.

Substitute (5.9) into (5.10) and rearrange to obtain

F G(s) [ E(t) - S G iz (5.11)11 + G(s)Sff fx

This force, F, is now complex and is the actual force measured by the
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force transducer. It is, in fact, P(t) of equation (5.1), for the

case with feedback. Therefore,

G(s)[E(t) - S G 5E]
MR + K(l + in)x = [- + x(s)SfGfJ (5.12)

Gather terms in K and

R[M + G(s)S f G ] + K(1 + in)x - G(s) E(t) (5.13)
xLM 1+ G(s)S f f 'Ll + G(s)SfGf1

Equation (5.13) has exactly the same form as equation (5.1) and

therefore has the same solution. All the resonance conditions previously

described apply and the properties can be obtained. It can be seen from

equation (5.7) that the feedback signal is out of phase with the excitation

voltage. This results in a "mass" increase and natural frequency decrease.

If the polarity is reversed, the "mass" is decreased and natural frequency

increased.

This technique is a resonance technique, but the fact remains

that the mechanical system is being driven to resonance amplitudes off

true resonance. This means that large forces will be required, and these

should be calculated. For these calculations it was decided to let

Gf = 0, that is, there was no force feedback loop. With this assumption

equation (5.11) becomes

F = E(t) - S G xR (5.14)

and equation (5.13) becomes

Z[M + G(s)SGxx] + K(l + in)x = E(t)G(s) (5.15)

It is assumed that the transducer and the amplifiers have constant

electronic characteristics, and therefore we can write

G(s)Sx G = M' (5.16)

and

E(t) G(s) = P eiwt (5.17)
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Then

[M + M' ] + K(l + in)x = Pe Wt (5.18)

and

F = P eimt - M'x (5.19)

Equation (5.18) has equation (5.2) as a solution (with the use of the

proper mass parameter). Therefore

P0 r(1 -
2 ) _i i~t

X = -- o e (5.20)K [(1 -_ 2)2 + n21

It is a harmonic quantity and, therefore,

S= - W2x (5.21)

Substituting (5.21) and (5.20) into (5.19) gives

F = P.eiWt {I + 2M' [(i - 22) - iTl } (5.22)
o K [(l _ 2)2 + n2]

At "resonance" 2 = 1 and

F= P eiWt [1 i i M'] (5.23)

But

W K (5.24)
new M + M'

Therefore
Fe= [1 - i(M + M') ] (5.25)

P e t (+ )

0

From equation (5.25) the two limiting cases can be easily deduced. When

M' = 0 (no feedback or mass change) the force ratio is 1.0. When M' -

the force ratio approaches I - . This has a magnitude given by

1e n
F +21] (5.26)

which can be quite large for small values of i.
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If the mass is to be decreased, equation (5.25) becomes

F - M') (5.27)
Pe

0

When M' = 0 again the ratio is 1. However, as Mt - M the

ratio approaches infinity and the natural frequency also approaches

infinity, because the apparent mass approaches zero.

In general, the "resonant" force required can be written

F [C i(__ m)J (5.28)
P i~t - i+ m

whr m M ndcnvaybewe0- n
M'where m = -• and can vary between -l and +•.

The real part of this force ratio is fixed and hence the variation

of the overall ratio can be seen by looking at the variation of the modulus

of the imaginary part. This is shown, normalized by n, in Figure 5.2.

The other quantity of interest is the change of the "resonant"

frequency. The new resonant frequency is given by

)2 -_ K
(W 2 K (5.29)"mnew M + M1

Therefore

(e (M + MO = (+) (5.30)
S"M~ 2  l+m"n

This ratio is also shown in Figure 5.2.

From Figure 5.2 it can be seen that for a "mass" decrease the

required force goes up very rapidly and for a "mass" increase, the amount

of increase needed is very large to obtain an appreciable frequency shift.

Such a system was constructed and tested, with only limited

success for very small changes in natural frequency. There are several

possible reasons for this. The analysis assumes that all amplifiers have

constant characteristics with frequency. This is not necessarily true to

the degree of accuracy required. Since it is so important to maintain

the correct phase information in the signals it was probably this failing

in the equipment which led to failure and abandonment of the method. It
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does, however, appear workable and it is possible that a working system

could be set up taking great care in the design and construction of the

electronic system.

McConnell's method, however, gives no force advantage. The

force required to obtain a given response is the same as that required

to drive the single degree of freedom system without feedback to the

same amplitude by "brute force". For this reason, and because the

implementation of the method presented the problems already described,

it was decided to investigate an off resonant technique similar to that

used by Grootenhuis (39). The major difficulty likely to be encountered

in the use of such a technique will be the necessity of accurately

measuring a phase angle which may be quite small (Fig. 5.4).

electronic equipment is available for this task, however.

The single degree of freedom shear system shown schematically

in Figure 5.3 is the one to be considered. Equation (5.2) is a valid

solution for this system and it is only necessary to convert K into shear

parameters to obtain the desired properties.

For a system with hysteretic damping the phase relationships

between force and displacement, velocity or acceleration are all the same

and any one of the three can be used experimentally. Curves of the

phase angle P defined by

tan D =2 (5.31)1 - •

are shown in Figure(5.4) for various values of n. For frequencies well

below the natural frequency the phase angles do not change rapidly with

frequency, but they are well separated for different values of loss

factor. Thus the value of Q cannot be accurately determined, but

this is not necessary to determine the properties. The only things

which are required are measures of force and response amplitude and phase

angle between them. These are all finite quantities which can be

determined quite accurately. In the region of Q > 2 or 2.5, the

curves begin to converge rather rapidly and so, if possible, the measure-

ments should be made for 0 < approximately 2.0.
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The experimental technique to be adopted is to drive the system

to a constant amplitude over a range of frequencies and to measure the

amplitude of the force required and the phase angle between the two.

Following the analysis of Grootenhuis (39) the displacement is taken to

be

x= X eWt (5.32)
0

The acceleration is
-2X e iw(533)

0
. A
1iand the force is equal to P e . The shear force acting on the visco-

0

elastic material will be the applied force minus the inertia force of the

moving mass. The moving mass will, in fact, be the moving central block

plus the effective mass of the force transducer plus approximately 1 the

mass of the viscoelastic material. The inertia force is then

MK = -MW X e (5.34)

Since phase angles will be measured relative to the force, it is assumed

that P is real. Figure 5.5 shows the system forces in the phase0

plane. The sum of components in the two principal directions must be

zero. Hence,

Po + MW2 1Xicos P + nKjX Isin P - KIX ocos P = 0 (5.35)

and

MW21Xo Isin 4 - nKlXolcosP - KlXo0 sin 0 = 0 (5.36)

(5.35) and (5.36) can be used to simultaneously solve for n and K.

- P sin 0O (5.37)
Po cos 0 + IX0 1 Mw2

and KPo cos ¢ + IX oMw2
K = loI 0 (5.38)

If the surface area of one face of the block, M, of Figure

5.3 is A then 2GAr2G

r (5.39)
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from simple stress strain relationships. Substituting (5.39) into

(5.38) gives

P cos 4, + IXOIMw2
G [ o ] t (5.40)2A X TO

Equations (5.37) and (5.40) can then be used at any frequency

within the capability of the equipment to maintain IX01 at the required

value and measure 4' accurately.

One danger of using a technique such as this is the possibility

of the error in the derived quantity being intolerably large. The values

of IX0 1, M, w, Ar and t can be measured quite accurately, leaving (D

as a possible major source of error. From equation (5.40) it is easily

seen that
- P t sin 0

-•= 2 A r oIx 01(5.41)

Using equations (5.2) and (5.39)

Thrfoe G sin , - + Y2] (5.42)

There fore,

DG = [ 0. 2)2 + n2 J' sin 4' a( (5.43)

It can be easily shown that

sin 0 = n(l - )2 2 • (5.44)

Therefore

G-- = nfa (5.45)

This means that the percentage error in G is n times the error in p

in radians. This can be maintained at an acceptable level over a wide

range of values of 4P.
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Similarly,

L__ = -(P o cos 'Z + IX o 0 IM 2 cos - p O

EP0 C + IX0 MW2 ]2  (5.46)

It can be shown by simple substitutions that

mn = (1i- Q2) + n2 (5.47)
n n

This percentage error in n can also be kept small as long as 02 does

not become too large and n is non zero. As predicted earlier, there-

fore, the technique should be applicable up to values of Q of at least

2.

An outline of some experimental results and the apparatus used

are given in Section VIII.
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VI. SIMPLY SUPPORTED BEAM EXPERIMENTAL RESULTS

In section III it was shown that a simply supported beam with

sinusoidal mode shapes would be a reasonable model for the middle portion

of the panel with simply supported edges for the purpose of damping pre-

dictions using strip dampers. In section IV the energy dissipation theory
was developed using this assumption. The experimental part of the beam

response and damping phase of the work are presented in this section.

A beam specimen of the configuration analysed in section III
was constructed for use in the experimentation. This specimen and the

small electrodynamic vibrator used to excite it are shown in Figure 6.1.
The beam in the photograph has applied to it the damping cantilevers of

section IV.3(a).

The simple supports for the beam consisted of small diameter
steel pins inserted into and cemented to the beam as close to the extreme

ends of the skin centre line as possible. These pins were held down on
the edges of razor blades by four extension springs. The vibrator was
mounted horizontally to exert a moment at the junction of the skin and

the end stringer. The end stringer rotates about the simple support for

all modes and hence this one vibrator location is sufficient to excite

any mode. There was a distinct possibility that the beam would tend to
move longitudinally in a rigid body mode, but it was felt that the inertia

of the beam plus the small but finite restraining force of the pins on the
razor blades would be sufficient to keep this from happening to any

appreciable extent.

The response of the beam was measured by means of strain gauges

bonded at mid span to the outside surface of the skin. The axis of the

gauges was aligned with the beam axis. The first gauges tried were the
fcil type but it was found that the whole system became non linear if the

beam were forced enough to obtain a measurable signal. Therefore, semi-

conductor gauges were bonded to the skins of spans 3 and 5 (numbered from
the vibrator end). These, even taking into account their lower current
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carrying capacity, have an equivalent sensitivity about 30 times greater

than that of a typical foil gauge.

The strain gauge signal was amplified and either measured with

a voltmeter or recorded on magnetic tape for subsequent analysis. The

mode shapes were deduced by looking at the phase and amplitude relation-

ships of the two gauges and by manually probing for'nodes. Accelerometers

were not used because the beam is a low stiffness structure and the

accelerometer mass added to the skin might influence the modes.

The force applied by the vibrator was monitored by measuring

the current into it. In general, back emf effects will be present, as

will inertia effects due to the moving components of the vibrator. These

will be quite small if the amplitudes are kept small and a reasonable

approximation will be that a constant current produces a constant exciting

force.

A block diagram of the electronic system is shown in Figure 6.2.
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VI.l Steady State Measurements

The first series of tests consisted of measurements taken on

the beam without any added damping. These were to confirm the natural

frequency and mode shape calculations and to determine the transfer

function or frequency response curve and the damping of the individual

modes of the system.

The natural frequencies calculated by the simple energy method

and those calculated using the transfer matrix method (listed in Table 3.2)

are repeated in Table 6.1, together with the experimentally determined

natural frequencies. These measured natural frequencies for the beam

with no added damping are shown in Figure 3.2 for comparison with theory.

The agreement is quite good for all but the fundamental mode. It was

shown by changing and finally removing the springs altogether that the

action of these pulling the pins down onto the razor blades was causing

this shift in the fundamental frequency. However, it was felt to be

necessary to restrain the beam, and since the effect was repeatable it

was decided to keep the springs in place. The primary purpose of the

experimental work was to compare response with and without added damping

and, hence, this frequency discrepancy was considered to be unimportant.

For the damping calculations, however, the measured fundamental natural

frequency was used for this mode.

Figure 6.3 shows the frequency response of the beam. This was

measured by keeping the vibrator current constant and measuring the

amplified strain gauge signals as the frequency was changed. The curve

of 6.3 was taken from the signal from strain gauge 3.

The normalized response of the two strain gauges is shown in

Figure 6.4. This was used to aid in the verification of the theoretical

mode shapes. The bending moment diagrams calculated by the transfer

matrix method are effectively the ratio of the bending stress at any point

along the length to the maximum in the beam. Thus, the maximum bending

stress in the beam can be calculated by dividing the measured stress at a

point by this ratio. This, of course, is only true if the assumed mode

shape and bending moment are correct.

The measured strain response of gauges 3 and 5 were normalized
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in this way for use in Figure 4. The agreement between the two for

modes 1, 2, 3 and 6 is a good indication that the theoretical bending

moment distributions for these modes are quite accurate. The results

for modes 4 and 5 are not as good, but this was expected. In mode 4

strain gauge 5 is at a location with almost zero curvature (Fig 3.3(b))

and hence is almost unstrained. Similarly, in mode 5 gauge 3 is at a

location where the strain is quite low. The strain gauges, however,

give a signal proportional to the average strain over their length,

which is finite. This effect, together with the probable error in the

actual location of the gauges could easily result in a small difference

in the absolute value but a large percentage error in measured strain.

This discrepancy is then passed on to the normalized values and the

agreement between the two is not as good as in the other four modes.

These calculations together with the manual node location

plus the close agreement of natural frequencies confirmed that the trans-

fer matrix method gives reliable results and hence that the simple sine

modes can be used in damping calculations for the first few modes.

The damping of the individual modes was first measured using

the vector response plot as described by Kennedy and Pancu in reference

42. In this method the response is measured as a component in phase

with the force and a component 90 degrees out of phase. When the imaginary

part of the response of a system with light hysteretic damping is plotted

versus the real part the result is a circular diagram as the frequency

passes through resonance. If a structure has two or more modes which are

well separated in frequency, distinct circles are obtained as the

frequency is varied through each mode. As the natural frequencies

come closer together the circles begin to coalesce and finally lose

their usefulness in determining the modal loss factor or natural frequency.

This happens in structures with high modal densities, but the peaks of

Figure 6.3 are well separated and the method is quite useful.

The two strain gauges gave similar results, and since strain

gauge 3 was in a position which enabled it to give a reasonable signal

for all of the first six modes, at least, most of the damping measurements

were made with this gauge.

Figures 6.5 and 6.6 are typical vector plots for modes 3 and 5
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respectively. Also shown in Figure 6.6 is the notation for determining

the loss factor from the vector plot. This is based on the method used

by Ford in reference 7. The resonant vector is drawn and two vectors

are drawn from the origin (the point where this cuts the diameter) to

points on either side of, but close to, the resonant vector. The angle

between these two vectors is e (radians) and the frequencies above and

below the resonant frequency, w n are w2 and w1l respectively.

Then
_ = 2  - -l 1 (6.1)
B-

Wn

These measured values of Ti are n of section IV.4 and are listedm

in Tables 4.3 and 6.2 for the modes considered. These are of the correct

order of magnitude for this type of structure in all cases but mode 1.

That vector plot, however, was decidedly flattened, even with very low

excitation, indicating that there was some non linearity present and the

measured damping may well be higher than it should be.

The readings were then repeated after adding three double canti-

levers of LD400 to the structure as shown in Figure 6.1. The material

used in this case was 0.080 inch thick by 0.5 inch wide.

The frequency response curve for this configuration is shown in

Figure 6.3 for comparison with the undamped beam. It had been concluded

in section IV that even the cantilever method should be quite effective

in reducing the response. Figure 6.3 shows this to be the case.

The peaks in Figure 6.3 for the beam with the cantilever dampers

are displaced slightly to a lower frequency. In this configuration the

damping material is adding mass to the stringer tips and little stiffness.

Hence it is expected to depress the natural frequencies somewhat and the

measured values are listed in Table 6.1. Since~in the damping beam

calculations, X is proportional to the square root of the frequency, a

change of a few percent in the natural frequencies will make little

difference in the values of X and hence in the total loss factor cal-

culations. Therefore, this effect has been neglected.

Figures 6.7 and 6.8 show the vector response plots for the beam

with added damping for the same modes as in Figures 6.5 and 6.6. The much
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greater frequency change for a given increment in phase angle indicates a

much higher value of loss factor in each case. The values of n determined

from these plots are nt of section IV.4 and can be compared with those

calculated from the theory of that section.

The theoretical and measured values of nt are listed in Table

6.2 with the values of %. The worst disagreement between predicted and

measured values of nt occurs in modes 2 and 5, but even these are within

a factor of two. The error in the value in mode 2 can be partly attributed

to experimental error. In the vector plot for this mode the values in the

region of resonance were rather erratic. The best fit circle was determined

by trial and error, but it is possible that the true circle should have been

of much smaller diameter and hence given a higher value for the damping.

In section IV it was indicated that mode 5 was beginning to be

marginal for the use of the sine mode. The effect of the stringers is,

in fact, to reduce rotation and translation at the stringer location,

reducing the excitation on the damping beams and hence reducing the amount

of damping added in this mode. This effect is shown by the measured loss

factor for mode 5 and is also indicated by mode 4, where the measured

value was lower than the predicted.

Despite these shortcomings, the prediction technique appears to

be valid and the predicted and measured values agree closely enough to be

useful.

The steady state vector response method of measuring damping,

however, has some very great disadvantages. Firstly, it is extremely

time consuming, and in a system which is temperature sensitive a long

test can lead to errors due to a temperature change. Secondly, if the

damping is light, the control overstability of~and accuracy of the

electronic equipment used is absolutely critical. In Figures 6.5 and 6.6,

for example, it can be seen that a very small frequency change causes a

large change in the response vector. The oscillator and other electronic

equipment used must be very stable to maintain the frequency long enough

to obtain a reliable reading.

There is an alternative transient method available, and this

should eliminate some of the problems. The amenability of the transient
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technique to this system was tested and the remainder of the beam response

data obtained using it.
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VI.2 Transient Excitation Tests

One transient technique of obtaining the natural frequencies

and damping of a structure is to excite the system and then suddenly

remove the excitation. The decaying response contains the required

information. This method, however, will be most effective if the ex-

citation is at or near a natural frequency. An even better method is

to excite the structure with an impulse. If the impulse is sufficiently

short, it will have a spectrum containing all frequencies up to a lower

limiting value, which is determined by the pulse duration (Ref. h3, p.7,

for example). Then the Fourier transform of the response will peak at

the natural frequencies of the system. An impulse, however, is extremely

difficult to produce reliably and its characteristics even more difficult

to determine experimentally. A more suitable technique is one in which

the frequency is swept rapidly over the range of interest.

White (44) has recently developed an oscillator in which the

excitation frequency is swept linearly over a chosen period of time between

chosen frequency limits. When this equipment is used to drive a vibrator

which in turn excites the structure, as in the case of the beam, the

frequency content of the force generated should be virtually constant

over the range of frequencies being swept. If the starting and finishing

frequencies are chosen such that they are slightly below and slightly

above the frequency range of interest, all the required modes can be

excited.

The use of this technique means that the problems associated

with steady state tests are avoided and the total time required to perform

the experiments is greatly reduced.

In general, the frequency response function f(iw) of a linear

system excited by a transient force is given by (h4)

f(iW) Y(i) (6.2)f~i )w=

where Y(iw) is the Fourier transform of the response and F(iw) is the

Fourier transform of the excitation. The beam structure excited by the

swept sine oscillator is non-stationary, but because the excitation and
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response decay quickly, the necessary Fourier transforms can be evaluated

numerically and the transfer function derived.

With the use of this sweep equipment to drive the system being

considered here, the Fourier transform of the forcing function is almost

"a constant value over the frequency range of interest. This means that

"a good approximation to the transfer function can be obtained simply by

Fourier transforming the response.

Figure 6.9 shows typical traces of the response and excitation

of the beam with the frequency swept between 10 Hz and 600 Hz in 5 seconds.
6 .9(a) shows the traces for the beam with no added damping and 6.9(b) for

the beam with three double cantilevers of LD400, 0.5 inch wide by 0.060

inch thick added. In both cases the response is the amplified output of

strain gauge 3.

Qualitatively these traces begin to show the pertinent facts.

Firstly, the magnitude of the force (vibrator current) is virtually constant.

Secondly, in 6 .9(a), the individual mode responses increase more rapidly,

rise higher and decay more slowly than those in 6.9(b). This shows that

the damping is lower in 6 .9(a). Thirdly, the slight decrease in natural

frequency is shown by the fact that the modes occur earlier in the sweep

cycle for the case with damped cantilevers attached. However, for

quantitative results, the Fourier transforms must be evaluated.

The Insitute of Sound and Vibration Research Data Analysis Facility

(45) was used to digitize the magnetic tape records of the signals and cal-

culate the Fourier transforms numerically. The complex division of the

Fourier transforms was then carried out to obtain the transfer function.

To obtain the damping for individual modes the frequency resolution is

increased and the division carried out over a frequency bandwidth containing

only one peak in the response function. The results can be used to plot

the transfer function or the vector response.

Fourier transforms as plotted directly by the computer are shown

in Figures 6 .10(a) and (b). The transform of the response shown in

Figure 6 .9(a) is shown in 6 .10(a) and in 6.10(b) is that of the excitation

of 6 .9(a). From 6.10(b) it can be seen that the excitation does have a
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very flat transform, and therefore 6.10(a) is a very good approximation

to the magnitude of the system transfer function. The heights of the

peaks will be changed a little by the irregularities in the excitation

spectrum, but not significantly. The peaks should also be very close

to the natural frequencies.

The vector diagram for mode 3 of the undamped beam was obtained

by the transient method by investigating only the frequency region of that

peak and is shown in Figure 6.11. This is the transient method vector

plot for the same mode of the beam in the same configuration as that of

Figure 6.5, and the two are directly comparable. The two are almost

identical, with the plot from the transient test yielding a slightly higher

loss factor.

The natural frequencies and individual mode loss factors were

determined in this way for the beam with no added damping and are listed

in Table 6.3. The natural frequencies can be compared with those in

Table 6.1 and the loss factors with the steady state value of rm of

Table 6.2. All the natural frequencies determined by the two methods

agree to within less than 1/5 of 1% except mode 1, which is within 1%.

The loss factors do not agree nearly as well (on a percentage basis) but

the actual values are quite small and the general agreement is excellent.

There is no certainty, in fact, that repeating the steady state tests

would give any closer agreement with the first series of tests than do

the values measured by the transient technique. The loss factor measured

for the fundamental mode is different by the greatest amount from the

steady state test. Since, in the transient test, the amplitudes do not

have time to grow to the same level as in the steady state test, it is

again possible that the suspected nonlinearity is the explanation for the

disagreement. The fact that the transient value is lower supports this.

It is usual in a transient test to measure the damping to be slightly

higher than in the steady state case because in the interest of time

saving the number of samples digitized is kept to a minimum and some

truncation errors can occur. These errors cause the measured loss factor

to be slightly higher than the true value. The measured values for mode

1 are opposite to this trend.
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The transient method of test and analysis was also applied to

the beam with double cantilevers of LD400. Three variations were tested.

In the first, the material was 0.5 inch wide by 0.080 inch thick. In the

second it was 1 inch wide and 0.06 inch thick. The third was the same

thickness as the second but 0.5 inch wide. The vector response plot for

mode 5 damped by the 0.5 inch x 0.080 inch cantilevers is shown in

Figure 6.12, for comparison with the steady state plot of Figure 6.8. The

natural frequencies and modal loss factors measured in this way are also

listed in Table 6.3.

In general, the natural frequencies listed in Table 6.3 show the

expected trend for any mode. The undamped beam has the highest natural

frequency and the greater the mass addition due to damping material, the

lower the natural frequency becomes. This change of natural frequency in

the cases considered is of the order of ten percent, in the worst cases,

and less in general. This is again an indication that the assumptions

made in the damping analysis are reasonable.

The loss factors for configurations b and c in Table 6.3 are

the experimental values of nt for these cases and they can be compared

with the theoretical values listed in Table 4.3. The agreement is

generally quite good, with the measured data showing the correct trends.

The loss factors in column d of Table 6.3 can be compared with

both the theoretical and steady state values in Table 6.2. In this case

the agreement between steady state and transient methods is not as close

as it was in the measurements taken on the undamped beam. It is

interesting to note, however, that in the values for mode 2, which shows

quite a large difference between transient and steady state, the loss

factor obtained by the transient method falls much nearer to the theoretical.

Loss factor and other damping measurements are at best very

difficult to make, even in simple systems. The addition of a hysteretic

material in the manner described here to a system which is relatively com-

plex to begin with is certain to make the measurements more difficult. Add
to this the fact that a change of temperature of a few degrees can change

drastically the properties of the particular damping material being used
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and the degree of certainty decreases still further. The silicone

rubbers with their more stable temperature characteristics may alleviate

the latter problem somewhat, at least for small changes in ambient con-

ditions, but it is present with the LDhO0. Therefore, the agreement

which has been reached between theoretical natural frequencies and total

loss factors and the experimental quantities measured in two totally

different ways is conclusive evidence that the assumptions made are valid

and the techniques and models adequate.

Since the damping treatment effect has been placed on a reasonable

theoretical basis it is now possible to investigate experimentally its

effect on the more complex panel structure excited acoustically.
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VII. PANEL EXPERIMENTAL WORK

The purpose of the beam tests of the previous section was

primarily to test the transfer matrix program calculations and the

damping theory accuracy using a system with reasonably well defined

experimental parameters. The panel, however, is a different and more

complex dyanmic system which must be tested to simulate more closely

the service conditions of integrally stiffened structures.

The experimental panel, shown schematically in Figure 2.5,

is the one used for the tests described in this section. The conditions

under which this type of structure must operate are not those of single

point excitation as used in reference 10 or in the beam tests of the

preceding section. The structure will be subjected to fluctuating

pressure forces due to the acoustic environment. These will be distri-

buted over the whole of the structure and effects such as wavelength

matching metnioned in section II will be important. To test this panel

under these conditions it was suspended in the side of the random siren

facility described in reference 46. With this facility it is possible

to subject the panel to harmonic or random plane waves at approximately

grazing incidence over a range of frequencies between 100 and 1000 Hz.

The test section noise level can be as high as 150 dB re 2 x 10-4 pbar.

The specimen could not be mounted in a rigid framework because

of space limitations. Therefore, the edges were stiffened as shown

schematically in Figure 7.1 and the panel was suspended on metal flexures

in a wooden framework, which could be placed in the side of the tunnel.

The stringers were vertical, and thus the pressure in a vertical plane

perpendicular to the specimen skin and parallel to the stringers was

constant at any time. This means that modes with two half waves between

the specimen ends will be virtually impossible to excite. This is accept-

able, however, because the first such mode is almost at the upper frequency

limit of the tunnel and of the frequency range of interest. The experi-

mental effort was concentrated, therefore, on the modes with one half wave
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between ends.

All the tests carried out on the panel were made with an

unconstrained layer of LD400 covering the whole of the inner skin

surface (between stringers). This layer was 0.060 inch thick. The

reason for this was that the panel alone was expected to have extremely

light damping. Lyons (10) had excited the same specimen by means of

an electrodynamic vibrator with the panel bolted to a steel framework.

Both of these factors can contribute damping, but in the present acoustic

tests both are missing. If the initial damping is then extremely light,

as it is expected to be, the effect of the added damping due to the

various treatments may appear over-optimistically large. It was felt

that with the unconstrained layer on the panel the initial damping would

be high enough to be representative of service conditions. Then, any

increase due to added treatments would be more realistic.
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VII.1 Steady State Harmonic Tests

As in the beam experiments the first tests carried out were

those with steady state harmonic excitation. Strain gauges 1 to 11

of Figure 2.5 were foil gauges and again found to lack sensitivity.

Strain gauges 13, 14 and 15 were semi-conductor gauges and were used

for all response measurements. Very early in the testing the signals

from the three gauges were compared and found to agree with each other,

within experimental limits as well as did the two gauges in the beam

tests. The frequency content, except when a gauge was on or near a

nodal point, was always the same in all three and the magnitudes could

be related by assumed mode shapes and gauge location. Therefore, when

results from one gauge only are presented they apply to all three.

The frequency response function was measured by monitoring a

microphone placed at the centre of the tunnel cross section opposite the

middle of the specimen. The sound pressure level was kept constant for

various frequencies and the strain gauge readings taken. The curve for

strain gauge 13 is shown in Figure 7.2 for comparison with the single

point tests shown in Figure 4.2.

Two points become immediately apparent. The natural frequencies

obtained in the acoustic test appear to be somewhat lower, and the

damping appears to be about the same for the highest peaks in both cases.

The latter justifies the assumption that the damping without the uncon-

strained layer would have been very much lighter in the acoustic tests

than in Lyons' single point tests.

An attempt was made to measure the damping of individual modes,

but this was not very successful if reasonable accuracy was desired. The

vector plots were generally quite badly distorted and often contained more

than one loop, as shown in Figure 7.3 for example. There are two possible

reasons for this. The microphone signal is not an exact measure of the

force on the specimen, but only of the pressure fluctuations at one point.

Even if the noise level at one point is constant the generalized force on

the specimen might change fairly rapidly with frequency. It is possible
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that the acoustic properties of the tunnel are such that the pressures

at various points on the specimen change more than would be indicated

by a small change in the frequency of the travelling wave.

The probable cause of the secondary loops in the vector plots

is the vibration of the support structure. This was by no means rigid

and will thus be coupled with the plate to give additional natural fre-

quencies. These would affect the panel vector plots to some extent. The

motion of the massive supports would also explain the decrease in natural

frequency.

It would have been useful to know the loss factors of the

individual modes, but with the difficulties associated with their measure-

ment it was decided to continue without them for reasons explained later.

It is not likely that the transient technique would have been any more

successful because the structure secondary modes would still show up and

the problem of the changing pressure field would still exist.

Neither Lyon's measured natural frequencies nor those of the

peaks in Figure 7.2 agree with the predicted values of Section II as well

as did the beam experimental results. This was to be expected because

Of the difficulty of obtaining accurate boundary conditions. The mode

shapes, however, are expected to be quite accurate, and Lyons found that

his major peaks corresponded to theoretical modes 1 to 4.

In order to determine the overall mode shape to compare with

theory the acoustic excitation was applied at the frequencies of the major

peaks of Figure 7.2. The surface of the specimen, including the support

structure, was probed with a 2 gram accelerometer. A preliminary phase

comparison between the three semi-conductor strain gauges had indicated

that the four major peaks in the acoustic excitation frequency response

curve were, in fact, modes 1, 2, 4 and 5. The normalized acceleration

response curves across the specimen centre line at the frequencies of

these four major peaks confirm this, and are shown in Figure 7.4. These

centre line mode shapes conform quite well with the theoretical values,

also shown in Figure 7.4, for comparison. However, the suspected motion

of the side supports is present. Figure 7.5 shows the acceleration res-

ponses for two of the modes at 5 locations along the specimen length.
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These confirm that the end and side supports were definitely moving, and

hence affecting the response.

This motion of the massive side supports involves a considerable

amount of kinetic energy and is a possible explanation for the low values

of the natural frequencies which were measured. Prior to modifying the

support structure to attempt to reduce the effect, however, some pre-

liminary measurements with added damping were taken.

The damping material was added across the stringers at the speci-

men centre line in the configuration of Figure 4.1(b). The LD400 strip

was 2 inches wide and 0.060 inch thick. The frequency response curve was

determined and one half of the damping material width was removed. The

measurements were then repeated. These frequency response curves are

shown in Figure 7.2. Although the modal loss factors were not measured,

as explained earlier, some measure of the effectiveness of applied damping

treatments can be obtained simply by evaluating the reduction of the peaks

in the response curve for a given excitation noise level, and this was

carried out. In this way the large effect of the very small amount of

material added can be seen. The percentage reduction of the individual

peaks and the percentage of weight added are listed in Table 7.1. As

expected from the analysis of Section IV the treatment is seen to be very

effective for a very small mass addition.

Some random excitation tests were carried out on the panel in

the above stiffened condition with and without damping and these results

are given in the next section. Extra support was then added to the panel

in the following way. The ends were clamped between the existing lengths

of angle iron and 2 inch by 1.5 inch light alloy bars with slots machined

to fit over the stringers. The sides were further reinforced by clamping

the skin between the existing steel bars and 1.5 inch by 1.5 inch light

alloy bars. The specimen in this configuration mounted in the acoustic

tunnel to be tested is shown in Figure 7.6. The figure also shows the

damping treatment across the stringers.

The steady state frequency response was measured without the

damping treatment on the stringers, and is shown in Figure 7.7. The peaks

now occur at approximately the same frequencies as in Lyons' tests (Figure

4.2) arid the general shape of the curve is quite similar.
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The measured peak response values of 7.7 are lower than those

of 7.2, but this is due to a reduction in excitation intensity. The

sound pressure level for Figure 7.2 was maintained at 145 dB and for 7.7

it was 140 dB. This implies a reduction by almost a factor of two in

the pressure fluctuations and therefore a reduction of about two in the

stress levels.

It was believed that the extra stiffeners had eliminated most

of the motion of the supports and this was found to be the case at the

frequencies of all the peaks but one. The acceleration responses were

again measured with the 2 gram accelerometer. These are shown in Figure

7.8 for the specimen centre line at the frequencies of the major peaks

except the one at 670 Hz. In each of the modes shown the support struc-

ture accelerations were negligible and those on either side of the centre

line indicated that these were very pure modes with one half wave between

ends. The mode shapes were those predicted in Section II.

The peak at 670 was the only one which involved major support

structure motion, and it was probably a combination of support bending

and panel mode 5.

From the results of this section it is concluded that the mode

shapes calculated by the transfer matrix method reliably approximate the

manner in which an integrally stiffened panel vibrates when excited

acoustically. The natural frequencies predicted did not agree closely

with experimental values but this can be explained by support structure

deviations from those assumed in the theory. The variation with mode

number, however, conforms with the trends shown in Figure 2.12.
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VII.2 Stationary Random Acoustic Excitation Tests

In the previous section it was stated that the modal loss

factors were not calculated for the panel under the influence of acoustic

excitation. In service, panels will be excited by random acoustic pres-

sure fluctuations, and under these conditions the important parameters

from the point of view of fatigue damage accumulation and fatigue crack

propagation are the root mean square of the stress and the number of stress

reversals or zero crossings. The root mean square stress (or strain) is

an easily measured experimental quantity, and the stress reversals can be

determined from the spectral density of the strain signal. Since this is

the case, the overall effect of the various damping treatments can be

assessed from panel tests without actually measuring the loss factors of

the individual modes. The beam experiments have confirmed the damping

theory and the tests under conditions of random acoustic excitation will

demonstrate the benefits to be gained in a pseudo-service environment.

The specimen of Figure 7.6 was excited with random noise in the

acoustic tunnel both before the additional boundary stiffening and after.

The excitation again consisted of plane waves at grazing incidence, but

now the amplitude and frequency of the pressure fluctuations were random.

As in the previous section, the sound pressure level was monitored by

means of a microphone, and the response measured by means of the semi-

conductor strain gauges. Both signals were recorded simultaneously on

magnetic tape for subsequent analysis.

VII.2(a) Data analysis techniques

In the case of random excitation the analysis of the data becomes

somewhat more difficult. Since all frequencies and all amplitudes are

present in both the excitation and the response some method must be used

to determine the statistical properties and frequency content of the

signals. Such methods are available in the literature.

Robson (47) describes the application of harmonic analysis to

a system undergoing random motion and gives the relationship between the

84



autocorrelation function and the spectral density of a signal.

If the response of a system (the panel for instance) is given

by C(t) where • can be strain, displacement, etc., the autocorrelation

function

R (T) is defined by

R (T) = C(t)•(t + 'T) (7.1)

In this equation T is a time delay, t is time, and the

bar over the expression on the right hand side designates an average

over all samples being considered. Robson shows that the Fourier trans-

form of the autocorrelation function is the spectral density S(f). (In

fact, the two are a Fourier transform pair.) The spectral density describes

the frequency content of the signal being analysed and the autocorrelation

function the temporal properties.

A useful property of the autocorrelation function and spectral

density is that the autocorrelation function for zero time delay (T = 0)

is equal to the mean square of the signal which is equal to the area under

the spectral density curve.

Robson also shows that if a linear single degree of freedom

system is excited by a stationary randomly varying force, the spectral

density of the response is equal to the spectral density of the excitation

multiplied by the square of the modulus of the transfer function (frequency

response curve). All of these properties will be useful in the data

analysis in this section because they can be used in the numerical analysis

utilizing a digital computer.

Two further useful facts are pointed out by Robson. The first

is that in a multi-degree of freedom system the response spectral density

is approximately equal to the square of the modulus of the transfer function

multiplied by the spectral density of the excitation, provided that the

damping is small and the peaks in the response curve well separated. *The

second is that the root mean square response under the above conditions is

inversely proportional to the square root of the damping. This means that

the damping treatments are not expected to show as great an effect on the
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root mean square response as they do on the reduction of the peaks in

steady state harmonic tests.

VII.2(b) Stationary Random Excitation Experimental Results

To measure the random response characteristics of the panel in

the configuration used to obtain the frequency response curve of Figure

7.2, it was excited by broadband noise. The signal from the random noise

generator used to drive the siren was passed through a band pass filter

to utilize the full frequency capability of the tunnel. The data analysis

facility (45) was used to obtain the spectral density of the microphone

signal, and this is shown in Figure 7.9. The ordinate in this figure is

linear and therefore corresponds to the spectral density of the sound

pressure fluctuations.

The decibel scale is based on the logarithm of the sound pressure

and hence the decibel or sound pressure level variation over the frequency

range of interest is very small. The noise signal can be considered to

almost "white" and the spectral density of the response signal is propor-

tional to the square of the modulus of the transfer function.

For the tests on the panel in this configuration the noise level

was maintained at 150 dB (overall) re 2 x 10-4 hbar. The spectral density

of the response (strain gauge 13) is shown in Figure 7.10* for the panel

with no damping material on the stringers. The spectral density of the

response of the panel to the same excitation after the addition of a strip

of LD400 2 inches wide by .060 inch thick to the stringer tips is shown in

Figure 7.11. The RMS strain has been reduced by about 75 percent as shown

by the measured reductions listed in Table 7.2.

Keeping in mind that the spectra of 7.10 and 7.11 are essentially

the square of the curves in 7.2 a comparison can be made between them. For

the panel with no added damping the peaks in the spectra correspond exactly

with those which are present in the frequency response curve. There is,

however, an extra peak at about 480 Hz. This is probably the third mode,

*The ordinates in Figures 7.10 to 7.14 have been given numerical values,
but these have been normalized during the computation. Therefore, to make
comparisons between figures the ,RMS of the signal is needed, and the
values are given on each figure.
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which did not appear in the harmonic tests and which may have been

hidden in the hump in the very large peak at 550 Hz. The heights of

the peaks in the spectra are also of the proper relative magnitudes

except for the mode at 720 Hz which appears to be less strongly ex-

cited by the random noise. This is partly due to the start of the

fall-off of the excitation spectral density as seen in Figure 7.9.

The addition of the damping material reduces all but two

of the peaks to the point where they do not appear within the resolu-

tion of the computer produced graph. Mode 2, though drastically

reduced, is still predominant and mode 4 is barely in evidence.

As in Figure 7.2, the frequencies of the peaks are raised

slightly by the damping material, but only by a few percent, indicating

a fairly small net effect on ratio of system stiffness to mass.

When the additional edge support had been added to the panel

the response to random noise was again measured with no added damping

and with various widths and thicknesses of the damping material across

the stringers. The microphone signal was analysed on several occasions

to check that the noise field did not change appreciably, and in each

case was found to agree with the spectrum in Figure 7.9. For the

tests in this configur.ation, the noise level was reduced to 140 dBP

since this was found to give adequate strain signals without unduly

taxing the equipment.

The variations tested and the results obtained are listed

in Table 7.3. The strain spectral densities were calculated for each

variation for a comparison of frequency contents. In general, all the

damped configurations yielded similar spectra with some differences in

peak ratios.

The waveform and spectral density of the signal from strain

gauge 13 are shown in Figure 7.12 for the case with no added damping

across the stringers. The waveform display in this figure is shown

for illustration only, and yields no quantitative information. The

spectrum is shown for direct comparison with Figure 7.7, and the two

agree quite well. The peaks at the higher frequencies in the spectrum
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are again lower than expected due to noise level fall-off.

A typical waveform and spectrum are shown in Figure 7.13 for

the panel with damping across the stringer tips. Unlike the case of

the panel before the additional stiffening was added, most of the modes

are still in evidence, but all have been reduced. One possible reason

for this difference is that in the previous case the large support

motion made the damping treatment relatively less effective for the

affected modes due to the large mass of the moving components. In

both instances, however, the RMS reductions are very large.

The final configuration of the panel which was tested was

that with the shear dampers of Figure 4.19. The material selected was

material 3 of the next section and the damper was made up in three

combinations of skin and shear layer thicknesses. The shear dampers

were all 1.0 inch wide. The excitation was maintained as in the previous

random acoustic tests and the percentage reduction in root mean square

response was determined. The shear beam parameters and strain reductions

are listed in Table 7.4. It had been stated in Section IV that the

thinnest shear layer configuration was expected to be most efficient and

this is the case. This fact implies that it should be possible to

optimise the thicknesses of shear layer and skins. In the present con-

figuration the skin strain is low enough to be ignored, but as the

shear layer becomes thinner, higher stresses are imposed on the skin and

it will strain to a significant extent. This means that there should

exist an optimum ratio, but this was not investigated.

From a comparison of Tables 7.3 and 7.4 it also appears that

the shear system is somewhat more effective than an equal width of LD400,

but the difference is small and the main advantage of laminated beam

construction lies in the chemical properties of the silicone rubber and

relative insensitivity of its stiffness and loss factor to temperature

changes.

The spectra of the strain signals of the panel damped by the

shear systems were also calculated and found to have frequency contents

similar to the panel with no damping and with LD400 strip dampers. A

typical waveform and spectrum are shown in Figure 7.14 for comparison

with the others.
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From the results of this section it can be concluded that

the addition of either a homogeneous or a shear damping system across

the stringers is an extremely efficient method of reducing the response

of an integrally stiffened panel to harmonic or random acoustic excita-

tion. This was predicted in Section IV and has been verified experi-

mentally.
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VII.3 Swept Sinewave Tests

It was stated at the beginning of this section that modal loss

factors were not essential to the determination of damping treatment

effectiveness and that the transient technique would probably not help

to obtain very accurate values. However, this technique can be a very

effective tool to obtain quickly the natural frequencies of a multi mode

structure. Even a simple frequency response curve similar to Figure

7.7 can be relatively tedious to measure using a steady state method.

If the structure can be excited by a measurable random force with a

flat spectrum then the spectral techniques described point out the

natural frequencies. However, fairly high power requirements must be

met in steady state random tests because all frequencies and modes must

be generated simultaneously. The transient technique is a useful

alternative.

Extensive tests were not carried out using the method, but an

example of its use will be given. The panel with added edge support

but without strip dampers was excited in the acoustic tunnel with the

input to the siren swept from 100 to 1000 Hz in 1 second. All electronic

amplitude controls were unaltered during the sweep, but because of the

siren and tunnel characteristics the exciting pressure (microphone sig-

nal) is not expected to have as flat a spectrum as did the vibrator

current in the beam tests. This is shown to be the case by the moduli

of the Fourier transforms of the response and excitation shown in

Figure 7.15(a) and (b). The required complex division of Fourier

transforms was carried out and the derived transfer function is shown

in 7.15(c). This shows the same natural frequencies as Figure 7.12

and demonstrates the t•efulness of the technique in this application.
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VIII, THE MEASURED DYNAMIC PROPERTIES OF SOME SILICONE
RUBBERS

VIII.1 Specimen and Apparatus Design

In the theoretical aspects of this part o~f the work outlined

in Section V it was pointed out that it is preferable to measure the shear

properties of soft materials. Therefore, a specimen was designed to

subject two equal thickness layers of material to a state of stress approach-

ing pure shear. The specimen is shown in Figure 8.1. Read (48) has shown

that there is an error associated with the measured value of the stiffness

of a body in shear due to the stress free ends because the absence of stress

on the ends results in the surface becoming curved instead of remaining

plane. Read shows a curve of the approximate error introduced by this

effect, and for an incompressible solid the lower bound on the ratio of

measured stiffness to stiffness in pure shear is given by

£s5
t 0.27

Ratio = - (8.1)£s

t

where ks is the shear layer length and t the thickness. For the

specimen shown in Figure 8.1

_s 2.0 inches

t 0.063 inch

and hence Ratio is greater than 0.99. The thickness of the shear layers

can be changed by changing the thickness of the central moving block, but

even if it is doubled to .125 inch the error is still less than 2 percent.

It has therefore been assumed that measured values need not be corrected

for the stress free edge effect and that the error due to this is

negligible.

A more serious problem is that of the bond between the two layers

of rubber and the four metal surfaces. It is relatively easy to manufacture

silicone rubber sheets, but if these are then bonded to the specimen holder
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it is almost certain that the properties measured will be some composite

value for the rubber and the adhesive rather than those of the rubber

alone. It is, therefore, desirable to vulcanize the rubber in situ to

avoid the problem.

A fixture was designed to press cure the rubber in the specimen

holder, which had been suitably cleaned and primed. This was carried out

in the Rubber Laboratory of The Royal Aircraft Establishment (Farnborough)

and the technique was successful. The shear layers shown in Figure 8.1

are, therefore, bonded directly to the metal without any additional ad-

hesive layers. The properties measured will be those of the specimen alone.

The dynamic properties are required over a range of frequencies

from about 100 to 1000 Hz. With this type of test a major problem is the

spurious resonances introduced by the support structure. The specimen

mounted in its steel support framework is shown in Figure 8.2. This figure

also shows the accelerometer, which was used to measure response, mounted

on the central block. The vibrator and connecting link, and the force

transducer are also shown. To determine whether extraneous support reso-

nances did exist the central block acceleration was maintained at l.0g

from 100 to 1000 Hz and the accelerations of various parts of the structure

were measured with another accelerometer, and these quantities are shown in

Figure 8.3.

The support structure, including the legs of the specimen holder,

showed a very small response with some small peaks at about 600 and 800 Hz.

These peaks, however, did not exceed 21 percent of the moving mass accelera-

tion, and it was assumed that they could be considered negligible. The

accelerations measured at the shaker spindle differed by as much as 20% from

those of the moving mass at low frequencies. This was probably due to an

accumulation of effects through the various threaded connections. In order

to keep the accelerometer out of the changing environment (described later)

the possibility of measuring response at the shaker had been considered.

The above results made this a rather doubtful procedure and all response

measurements were taken at the moving central mass.

The primary variations with temperature are likely to occur as

the temperature rises above ambient. To provide heat a drum was designed
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to fit around the specimen but not in direct contact with it. A one kilo-

watt heating tape was applied to the drum and this was lagged with glass

fibre insulation and asbestos tape. The ends of the drum were blanked off

with asbestos discs with openings for the shaker connector, the accelero-

meter lead and the thermometer port. With the existing large area of metal

to rubber surface contact it was felt that a measure of the air temperature

within the drum would be an adequate measure of the rubber temperature.

Embedding thermocouples in such a thin specimen would probably change the

stress field considerably and would not be likely to give much greater

accuracy in the measured temperature.

An overall view of the apparatus showing the driving and measuring

equipment as well as the heating drum and thermometer is shown in Figure

8.4.

In the calibration of the system it was found that having a small

fan blowing on the force transducer easily kept the temperature of that

component close to room temperature because the connecting link provided

only a small path for heat conduction. The accelerometer had to be in

the heated chamber as explained earlier, but this was a B and K type 4 335

used in conjunction with a charge amplifier. At temperatures up to 1500 C

this equipment has a negligible total change in sensitivity and can be

used with confidence.

A final quantity which required verification before the properties

could be measured was the temperature control and stability of the whole

system. It was found that for a fixed current into the heating tape the

temperature attained varied somewhat with ambient conditions, but that a

steady temperature was quickly reached and was thereafter maintained to

within about 0.5 C for as long as required to take the measurements. The

temperature rise above ambient versus heating current is shown in Figure

8.5, with the expected temperatures shown as a shaded area. During the

testing the temperature in the drum was monitored and recorded.
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VIII.2 Experimental Results

Since the tests of this section were of a preliminary nature,

only three material variations were tested. These have been designated

materials 1, 2 and 3 and their specifications are given in Appendix IV. For

each of these three materials the moving block acceleration, the force, and

the phase angle between the two were measured. From these the loss factor

and storage modulus were calculated using the theory of Section V. These

measurements and calculations were made at various temperatures between

ambient and 1500 C and for frequencies ranging from 200 Hz to 1000 Hz.

For the whole of the investigation the shear strain was maintained

at a level of 0.001 rms. The dynamic properties are almost certain to be

strain dependent and to obtain consistent values the force was adjusted to

obtain the correct acceleration at every frequency. This level is low

enough to preclude dynamic heating but high enough to be useful in dissi-

pating structural energy.

The three materials tested were all silicone rubbers and in

general their shear properties are not expected to vary rapidly with

temperature or frequency. The tests showed that the properties of material

3 varied less rapidly than the other two and that its loss factor was some-

what higher. Curves of the measured loss factor and shear modulus for

material 3 are shown in Figures 8.6 and 8.7 respectively.

From Figure 8.6 it can be seen that the loss factor is well

maintained to 150 C and this property should render the material very use-

ful in the shear damping application. From the curves for different values

of frequency it can also be seen that the loss factor is increasing with

frequency, as expected.

Figure 8.7 shows that the shear modulus has a local maximum at

about 400 Hz, but the variation with frequency is quite small. The curves

for different temperatures also show that the shear modulus is decreasing

slowly with increasing temperature.

The very useful loss factor maintained to 150 C together with a

shear modulus which does not vary rapidly with temperature or frequency

indicate that material 3 is a suitable one to use in constructing the shear
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damper of Figure 4.19. This material is also best suited to aircraft

use because of its fluorinated chemistry, making it highly resistant to

damage by hydrocarbon fluids.

Several shear dampers in the configuration of Figure 4.19 were

manufactured in the Rubber Laboratory of the Royal Aircraft Establishment.

The various combinations of skin and rubber thickness and the results

using them on the single panel have been described in Section VII.
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IX FULL SCALE TESTS

In Section VI tests on a beam were described and these confirmed

the vibration theory and damping predictions for the model. A more complex

panel structure was tested under more realistic conditions as described in

Section VII. These tests verified the more general panel vibration theory

and went on to show the great effectiveness of the damping treatment being

considered.

The next logical step in the chain of increasing complexity and

realism is the use of a full scale structure. Figure 9.1 shows the full

scale test specimen mounted in the acoustic tunnel. This box specimen

consists of a 3 by 3 array of bays of integrally stiffened skin mounted

on spars at a 20 inch pitch and on ribs at a 14 inch pitch. Each bay

contains five clear skin spans with one outer span on each end rivetted

to the spars, which are parallel to the stringers. The specimen is a box

section with identical and parallel skins.

The specimen was mounted in the acoustic tunnel such that the

random noise impinged on almost the entire centre bay of one side at

approximately grazing incidence. The reason for this restricted excitation

is that in preliminary tests using a bank of loudspeakers it was found that

the response was almost completely dominated by overall modes of the

specimen. Some skin modes did appear but it was very difficult to

separate them from the overall modes.

The first few mode shapes and natural frequencies for a single

skin panel were calculated by the transfer matrix method of Section II.

The mode shapes were of the type involving a great deal of stringer deflec-

tion, in effect overall panel modes as shown in Figure 2. 8 (a), and are

therefore not shown. The variation in calculated natural frequency with

mode number is shown in Figure 9.2. This curve has the same form as

those shown in Figure 2.11. Thus, the skin panels on the full scale test

specimen are expected to behave in a manner very similar to the panel of

section VII.
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The response of the panel was measured by means of strain

gauges, which were bonded to the inner and outer skin surfaces and to

the ribs and spars at various locations. One semi conductor strain

gauge was bonded to the outer surface of the skin at the centre of the

middle span on the side of the specimen facing the tunnel. The signal

from this gauge was used to obtain the spectra shown in Figures 9.3, 9.4

and 9.5. As in the case of Section VII the ordinates in these figures

are scaled and the measured overall rms voltage is also shown.

The excitation noise level for the tests on the box specimen was

maintained at 140 dB overall and its spectrum was evaluated. This was the

same as that shown in Figure T.9, and is not repeated.

The root mean square strain gauge response was measured for the

specimen with no added damping, with various quantities of LD400 across

the stringers and finally with one shear damper across the stringers. The

experimental results are listed in Table 9.1. The magnitudes of the

strain reduction are very encouraging. The damping treatment was added

only to one middle panel of the 18 skin panels in the structure. Although

the excitation also acted on only one panel the structural and acoustic

coupling present ensured that all the panels were vibrating to some extent.

In fact a check on this point revealed that the panel facing the one which

was excited responded to approximately the same level. Therefore, one

strip of damping material was acting to reduce the stress in the whole

structure to some extent.

The spectra were calculated for various strain gauges with and

without the damping treatments applied. Figures 9.3 to 9.5 show typical

spectra of the semi-conductor gauge signals under the conditions given in

the figures. Other skin gauges had spectra similar to those for the

same conditions. Waveform displays are also shown in these three figures

and are again given for illustration.

The multi modal behaviour of the panel is clearly shown by

Figure 9.3. The peak at 200 Hz corresponds to the fundamental overall

specimen mode which had swamped the response in preliminary loudspeaker

tests. It is still in evidence but is reduced to an acceptable level. The

spectra of Figures 9.4 and 9.5 are typical of those obtained for the damped

configuration, and the shapes of these are similar to that of 9.3. This
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shows that the damping treatments are effective in all modes throughout

the frequency bandwidth being considered. As in the single panel tests

the effect of the LD400 damping treatments was greater for greater mass

addition, but not directly proportional. The weight addition was not

calculated, but it was certainly a negligible portion of the very large

test specimen weight.

From the strain reductions measured in this section it appears

that the technique of bonding damping material across the tops of the

stringers is very effective, even in full scale structure. The reductions

were not as great as in the case of the single panel, but were large enough

to be significant in alleviating fatigue problems.
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X. CONCLUDING REMARKS AND RECOMMENDATIONS FOR FUTURE WORK

The theoretical mode shape and natural frequency calculations

have shown that the vibration characteristics of integrally stiffened

panels may be quite different from those of a conventional or builtup

structure. These characteristics are, to a large extent, governed by

the transverse bending behaviour of the stringers. In the typical geo-

metries studied the stiffener deflections are approximately as great as

those of the skin, with the whole panel vibrating in modes which closely

resemble those of an unstiffened plate of the same dimensions. This means

that in considering the response of the panels to acoustic excitation the

possibility of exciting low order modes by fluctuating pressure forces

which are in phase over a large portion of the structure must be taken

into account.

It has also been shown that as the panel length becomes shorter

for a given stringer and skin geometry the integrally stiffened structure

tends to behave more like a conventional one. Thus, in evaluating at

the design stage any vibration problems which might be suspected it is

necessary to first ascertain the behaviour pattern which is to be expected.

The mode shapes of a typical panel were measured experimentally

under conditions of acoustic excitation and found to agree very well with

the predictions. Experimental mode shapes and natural frequencies for a

simply supported beam taken from a panel cross section were also found to

agree with theory. From these results it was concluded that the method

of analysis was suitable and that the mathematical models used were ade-

quate.

It was found both theoretically and experimentally that the

addition of a damping treatment across the tops of the stringers can

effectively reduce the response of this type of structure to harmonic and

random acoustic excitation. At the moment this appears to be the only

reported relatively efficient means of damping integrally stiffened struc-

tures, and as such it can be very useful as a solution to existing problems.

It can also be included at the design stage if the acoustic environment
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forms a severe design case.

The experimental work to determine the dynamic properties of

some silicone rubbers was of a very preliminary nature, but it did enable

the fluorinated silicone rubber to be chosen as the most suitable of the

three investigated for the construction of a laminated damping treatment.

This is a more practical method of using the soft silicone rubbers, which

meet the chemical and temperature requirements of aircraft applications.

Full scale tests confirmed that the addition of a strip of

damping treatment to the stringers of one panel resulted in a significant

reduction in the root mean square response with negligible weight penalty.

The swept sine method of transient testing was used in several

cases and found to be an accurate and reliable means of establishing natural

frequencies and, in some instances, modal loss factors. It is especially

useful in applications with light damping and many modes.

Integrally stiffened skin stringer panels are being used increas-

ingly in aircraft applications and the work reported here has given some

insight into the behaviour of flat panels of this type. The author is

aware of work being carried out in the analysis of curved stiffened skins

and feels that it is essential to develop these analyses to apply to

curved integrally stiffened skins. It would also be desirable in future

to extend the experimental work to conditions of service excitation of

flat panels and to take curved panel response measurements both in the

field and in the laboratory. When the vibration characteristics of curved

panels have been established damping treatment applications should be

investigated.

The effect of in plane stresses is important and should be taken

into account. A pressurized fuselage under bending loads, for instance,

will impose biaxial in plane stresses on the stiffened skin and the vibra-

tion characteristics under these conditions are unknown. These effects

should be introduced into the analysis and experimental work. In addition

to this, the interaction of stiffened skins and underlying support structure

should be closely investigated.

An environmental factor which is important and should be investi-

gated is the effect of temperature change, especially as it influences the

damping treatments. The materials to be used for damping treatments should
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also be investigated further. The effect of varying material composition

variables including catalyst and filler type and quantity should be

determined and optimized if possible. The damping treatment itself,

especially the shear system, may be amenable to optimization of construction

and it would be worthwhile to calculate the effect of changing parameters

such as damping material and skin thicknesses and shear layer stiffness and

loss factor.

The damping material property measurements should be extended to

include the low temperature effects. The author also feels that because

the preliminary measurements of this report yielded a somewhat unexpected

behaviour an independent check of these properties by another method would

be very useful. One suggested method is a three point suspension of a

mass on discs of the material. This can then be driven by base excitation

and the properties in tension compression measured (as in ref. 40). The

trends should be the same as those exhibited by the shear properties.

Some further work will be necessary on the actual method of

attachment of the shear damping system. In conjunction with this a

series of fatigue tests would be very useful. Some fatigue data should

be accumulated for integrally stiffened panels (possibly random S-N curves)

without added damping and after the addition of the shear system. These

results would give some idea of the order of improvement in the fatigue

life of the panel itself and would also give an indication of the fatigue

resistance of the shear damper and its bond with the panel. These are

of great importance and will have to be determined to evaluate the full

usefulness of the suggested method of reducing the resonant vibrations

in integrally stiffened skins.
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APPENDIX I

The Summation over all Internal Stringers of the

Cosine2 Term in Equation (3.14)

In equation (3.14) it is required to find

M nvi
S C L (Al.l)i=lL

For the internal stringers

M = N- i (Al.2a)

and
Yi iL (Al.2b)

Substituting equation (Al.2b) into (Al.1) leads to

M
s Cos2 nii (Al.3)i=lN

This summation depends on the relationship between n and N, which aren

both integers. If n is also an integer, then each term of equation (Al.3)N
is equal to 1.0 and the sum is equal to M = N-l.n

For - not equal to an integer, rewrite (Al.3) using trigono-

metric identities (reference 19)

M 2 nirj = ' + Cos 2:n~ri (l

or M

2S M + cos (AI.4)

ii~l

where

2NT 
(Al.6)

M
and let cos ic S1 (Al.7)

i=l
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S1 = cos C + cos 2ý ... + cos Mc (AI.8)

Rewrite each cosine term as a sum of exponentials to obtain

e i" + e-iý e 2iý + e- 21C e imý + e -imcS+1 + +e+ e (AI.9)
2 2 "'2 2

(i is equal to V21 in equations (Al.9) and (AI.10)

2S 1  = (ei + e2iý ... + eMiC) + (e'i + e 2 iý ... + eM1C) (A1.9b)

This is the sum of two geometric series with M terms each and the sum of

each series is an explicit quantity.

2 = e - e + e - e e(A 
lo

2SI 1 "c + 1 - i (AI. i0)

1 - eI 1- e

i_ ~ e eMi +e-Mi• i(M+l) -i•(M+l) -

• .~ (AI.II)
2-e eI-e-

= 2 cosC + 2 cos MC - 2 cos C(M + 1) - 2 (Al.12)
2- 2 cos C

-1 + cos Mý - cos ý(M + 1) (Al.13)
1 - cos C

But (M + 1) = N from equation (A1.2a) and C(M + 1) = CN = 2nn from

equation (Al.6).

Therefore, cos C(M + 1) = cos 2n7 = +1 for all n,

and
2S1 = -(i + 1 - cos Mý) (AI.14)

1 - cos C"

But cos MC = cos(N- i)
S2n

cos{-•- (N- -)}
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= cos(2nir - d

= cos 2n7 cos(-0) + sin 2nr sin(-•c

= cos c (AI.15)

Substitute (kl.15)into (A1.14)

2S = (+i - cos ) = -22S1~ (i +1 CosC

S1 = -1 (AI.16)

From equations (Al.7) and (Al.5)

2S = M + S and, substituting (A1.16),

2M- (Al.17)
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APPENDIX II

Limit Analysis of the Damping Beam Function
as the Frequency approaches Zero

In the solution of the damping beam transverse vibrations the

coefficients are obtained as functions of frequency and geometry. Since

this is the solution for a translation and rotation of the ends it should

apply down to zero frequency and yield the static solution. A limit

analysis must be carried out, however, because the coefficients are

singular at zero frequency.

The case of an undamped beam is relatively straightforward and

will not be treated. In fact, it can be considered to be a special

case of a damped beam.

Equation (4.10) gives 4 as a function of X and n.

This can be rewritten

Xk(l + in = (a - is) (A2.1)

a and s are both real positive numbers for all non zero n. For

nd = 0, 5 = 0 and this is the special case of 42 real.

It is now necessary to expand each of the terms in equations

(4.9), (4.14) to (4.17) and (4.20) to (4.23) in exponential form.

cos O2 = cos(a - is)

ei(a -i ) e -i(a -i ) ee e + e a

2 2

e$ (cos a + i sin a) + e- (cos a - i sin a)
2

c(es + e- _e _-_e-

- cos a( ) + i sin a( 2

- cos a cosh $ + i sin a sinh a (A2.2)
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By a similar expansion and rearrangement of terms it can be shown that

the following relationships apply:

sin ¢k = sin a cosh S - i cos a sinh B (A2.3)

cosh €k = cos S cosh a - i sin B sinh a (A2.4)

sinh qz = cos B sinh a - i sin S cosh a (A2.5)

As -* 0 X - 0 and hence a -* 0 and 6 - 0.

Since all the arguments in equations (A2.2) to (A2.5) are

real the terms can be expanded as follows for arguments approaching zero:

a2 •4 2 4

cos (1 = (1-• + .4. . )(l + 0....)
2. 4! 2! 4

a 3  
_51_ B

+ i(a - (X. + a, + 0 + (A2.6)
3! !*3! 5

a3 a5 B2 4

sin¢£: (a --- 2 + .... )(i + +

a 2  a4  B 5)
- i(1 - + 4-...( + 5! + (A2.7)

2 4 32 5!

cosh ¢k = (1 + a + a . - 2- + 4-

2! 4! 2! 4

i(a + - + 3..)( - 3 (A2.8)

3 -5T,-+

sinh = (a + C. + a5 ... )( -. + 4...
3! 5! 2! 4

a 2  a 4 . .3 + 5
+ 2! + y.....)(- + ... ) (A2.9)

The cantilever and doubly attached cases must now be considered

separately.

From equation (4.14) it can be seen that in the cantilever

coefficients the singularity arises from the term 1

21[l + cos 06 cosh 4Z]
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From (A2.6) and (A2.8) cos €k and cosh €k both approach 1.0 as

a and ý approach 0 (to the first order). Therefore

1 1
24[L1 + cosok cosh k %70(A2.10)

Similarly, sin t -÷ a - i$ = (A2.11)

and sinhok ÷ a- is = Ok (A2.12)

Substituting (A2.10) to (A2.12) into equation (4.14) and

retaining terms which do not go to zero leads to

Limit (B ) = e(O) (A2.13)

similarly Limit (B ) = V()(A2.14~)
0 *0 3 2

Limit (B2 ) = e(o) (A2.15)

Limit (B ) = W(O) (A2.16)
ý *0 1 2w(0) os ~+ e~o w(0 (o)

Thsevlusmust then be susiue(noeuain(.)t b a2.15

Y =W(O co Oy+ eO)sin Oy + W()cosh Oy + -eO sinh 4Oy2 20 2 20 (A2.17)

Li mi (a - iw) (A2.18)

k2

Whenever Oy appears as an argument y can be substituted for k in the

limit expressions.

Therefore, limit (Cos Oy, cosh Oy) = 1.0 (A2.19)

and 0 0

limit (sin Oy, sinh Oy) = Oy (A2.20)

Substituting (A2.19) and (A2.20) into (A2.17) results in

Y = w(O) + CO)y (A2.21)

which is exactly the rigid body behaviour of a cantilever.
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The doubly attached beam is not as straightforward because the

singularities are of higher order than the first. Equation (4.20) con-
tains the denominator 1

2[1l- cos ,2. cosh ¢k]* Use equations (A2.6)

to (A2.9) to obtain

limit (cos ¢£ cosh ¢£) =
¢÷0

[ a2 + 4 2 _4
2  a2

limit [(_ _ + +a . -a*. + _ ... )(i + ++ + . +
a-+ 0 4! 2T li

+ 3  83Bx 8

+ ... )(a + . - 3.)

a2  a4  + a2 a4 a3 + 3
-2i- ! + •, . .) i + • + . . (6 - . . )( + 3-. "' ) (A2.22)

Multiplying out and neglecting terms of order 8 and higher leads to

limit (cos 4t cosh €£) = (1 + a 2 B2 -- 4  --- 2i+ (a2 2 (a223)4,÷-0 37( B

Therefore,
a4 B4  262) 2ia.__B (2 _2)

limit(l - cos€£ cosh €2) = (4 + - 2- a 2) _ 3 (a _ a
4 *0 (2.24)

S(• (a- iB)
But = (a -- is identically equal to equation (A2.24),

and limit (1 - cos 42 cosb 4Z) = (A2.25)

4, -* 0

By a similar process of expansion and multiplication it can be shown that

limit (cosh 42- cos €.) = (¢£)2 (A2.26)
¢÷0

that

limit(sinh 42 - sin €£) = (42) (A2.27)¢ ÷-* 0 3

and that

limit(sinh 42 + sin 42) = 20t (A2.28)
€÷-0
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The expressions (A2.25) to (A2.28) can be used in (4.20) to

(4.23) to determine the limits of the coefficients. These are

lim(B4 ) = 32 [2w(O) - 2w(£) + £e(o) + £(k)] (A.29)C-K) (W£)

lim(B 3) = 2 [3w() - 3w(O) - 2eO(o) - Ye(k)] (A2.30)

(B2) = (0) B4  (A2.31)

(Bl) = w(O) - B3  (A2.32)

Substituting (A2.29) to (A2.32) into (4.9) and y for Z in the limit

expressions for those terms with Oy as argument and rearranging, yields

the relationship

Y = W(O) [1 - 3(y)2 + 2(() 3 ] + zo(o)[(f) - 2(() 2 + (1) 3

+ w(k) [3(y)2_ 2(f) 3 ] 2 (e(-) _(L)2 _ (y) 3  (A2.33)

It can be shown using the standard equations for a statically

deflected beam that (A2.33) is, in fact, the static deflection equation

for the beam with the given end conditions.
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APPENDIX III

Motion of the Upper Damping Beam Skin in the
Shear System

Because the ftxrs and hence the damping of the shear system depend

on the relative motion between the upper and lower sandwich skins, it is

necessary to know the motion of the upper. (That of the lower is already

known because it is anchored to the stringer.)

It is assumed that the skins do not elongate. They strictly

deform the interlayer in shear. The following sketch shows the general

configuration.

va r

Smetal(light alloy)

5XI'1- - tR--- r

Y:Ttringer •

undeformed deformed

Assume the net motion of the upper skin is R in the positive

r direction. This motion is due to all the segments of the lower skin

acting on the upper through the shear layer.

The net motion of the tip of stringer i is -HO(i). Therefore

the relative motion between the stringer and the upper layer is HO(i) + R.
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Each end stringer is attached to an inner skin of length k12.

Each internal stringer has a segment of length £ attached to it.

The shear strain y is He(i) + R and the shear stress T

is G*y. Therefore,

= G,(H e(i) +R) (A3.1)
t

The shear force is T times the shear area.

For the internal stringers this area is b d k and for the

end ones it is bd k/2. The net force acting on the upper skin is a

summation over all stringers. For equilibrium this must be equal to

zero, expressed by

G*bdk N+1 N

2t [ Z (He(i) + R) + I (He(i) + R)] = 0 (A3.2)
i=l i=2

or N+l N

(N + 1)R + (N - 1)R + I He(i) + H e(i) =0 (A3.3)
i=1 i=2

M N
R= - [X 6(i) + - 0(i)] (A3.4)

i=l i=2

H M

= _ [2 e 0(i) - 0(0) - 0()] (A3.5)
i1l

When n is odd

6(o) = -e(k) (A3.6)

Therefore,

-H MR N 0(i) (A3.7)

N i=l1

But for n odd, and equal stringer spacing

8(i) = - e(N + 2 - i)
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M
Hence e e(i) o 0 (A3.8)

i-I

and R = 0.

When n is even

6(0) = e(k) (A3.9)

Therefore,

R -2_H [ 0(i) - e(o)] (A3.10)

or
Y-H e(i) + 8(o)] (A3.11)
i=2

e(i) = - wos i (A3.12)L L

Equation (A3.11) can be rewritten, noting that e(0) n as

2HnTr N nwiyi
R - N- [ y Cos L + (A3.13)

iin2

But n is even. Let it be 2g.

Then N

R = - [Hgo 2g[yyC +s (A3.14)
NL i=2 L

and Yi= (1 )L (A3.15)

NN

Therefore, R 4Hg r N cos 2gf(N Ni 1) + (A3.16)
NLLi=2N

N-I

or R __ N- [ Cos _ + 1] (A3.17)
NL N

In appendix I it was shown that
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N-1 2nwTi
cos N- =- (Al.16)i=1 N

Therefore,

N-I co•2gi = - (A3.18)

N

and

R = O. (A3.19)

Thus, R = 0 for n odd or even and the upper skin is effectively anchored

in space for the beam with equally spaced stringers.
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APPENDIX XV

Silicone Rubber Description

The materials used in the preliminary investigation of

Section VIII were designated Materials 1, 2 and 3.

Material 1 was a Polymethylvinylsilicone (ICI polymer E302)

with a vinyl constituent of about 0.15 mol. %. The filler used was

Aerosil 380, which has a particle size of 3-15 millimicrons. The

quantity of filler was approximately 20% by weight. The curing agent

used was Varox, which is 50% 25 dimethyl hexane in a mineral filler.

The quantity used was 3% by weight. The mill rolled rubber was press

cured for 1 hour at 160 0 C. The post cure cycle consisted of raising

the temperature in an oven from ambient to 2000C over a period of 2

hours, followed by an 8 hour soak at that temperature. The specimens

were then oven cooled to ambient. The specific gravity of the

resulting rubber is about 1.14.

Material 2 was a Polymethyl phenyl vinyl silicone (Midland

Silicones polymer S3160/5). This material contains a considerable

number of MePhSiO side chains and hence will probably have better low

temperature properties than material 1. The filler and catalyst type

and quantity were the same as for Material 1, as were the cure and

post cure cycles. The specific gravity is again 1..14.

Material 3 was a Polytrifluoropropyl methyl vinyl silicone

(Midland Silicones or Dow Corning LS63). This polymer also has many

side chains, and in addition its fluorinated chemistry makes it extremely

resistant to softening in a hydrocarbon environment. The filler was

already in the rubber as purchased, and the exact quantity is not known.

The curing agent was 1.3% by weight Perkadox PDS50, which consisted of

equal portions of dichlorobenzoyl peroxide and silicone oil. The press

cure was 20 minutes at 1300C. The post cure cycle was the same as for

materials 1 and 2. The specific gravity of material 3 is about 1.46.
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TABLE 2.1

TEST PANEL CONSTANTS

E 1.05 x 10 lbs/in2

G 4.04 x 106 lbs/in2

v 0.30

p 0.101 lbs/in3

h 0.090 in.

I 0.260 in 4

S

C 0.00484 in 4

C 0.00071 in6

ws
I O.0814 in4

n2
Hh 0.324 in 2

s

I 0in4

S -0.773 inch

c 0 inchY

22.0 inches

119



TABLE 2.2

Natural Frequencies for the Integrally Stiffened
Panel of Figure 2.5 (Simply Supported Ends) Cal-
culated by the Transfer Matrix Method or by
Reference 15.

Mode, Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Transfer Transfer Transfer Trans Ref. Trans. Ref. Ref. 15
Matrix Matrix Matrix Mat. 15 Mat. 15

(a) (b) (a) (b)

1 243.63 247.86 180.9162 44.2 44.2, 71.2 71.5 17.8
2 259.67 276.80 180.9322 123.6 123.8 179.0 178.6 27.7
3 303.43 337-79 243.26 - 256 338.8 338.5 59.0
4 382.68 429.96 254.86 441.1 441 551.2 551.0 118.0
5 491.95 540.09 283.47 679.3 680 815 206
6 683.88 333.39 324
7 804.46 402.26
8 1 914.32 484.39
9 999.95 568.16

10 1053.64 679.93
11 770.90
12 856.82

Case 1 - 6 spans, simply supported edges

Case 2 - 6 spans, fixed edges

Case 3 - 8 spans, free edges

Case 4 - 6 spans, simply supported edges with all stringer constants 0
(flat plate)

Case 5 - 6 spans, fixed edges with all stringer constants 0 (flate plate)

Case 6 - 24 inch by 22 inch flat plate with the 22 inch sides free

120



4,ý

Q) N C 0 CO ON--r (ON H- 00 LAO 0 M

H N~ H ' \M0~D tO M ON CMr o
14 COO CM LA LA N 01 ý tO

CO COi ONONHH H H

01 -CO OD 0 LA 01

H- ~ COj CO LA\\

"\1 Q ON\O. CYN 00 \ CMj LAr\ -
00 C CC) t- O\N oco -zr (Y) mN'\

t- 01' CM\J C OH- 00ONLAC\ -

u2 M CMj CM 01 -- t L '\.O CO ON\ ON 0
0L) CMl- H

\C) CO N r --. t- U-N'.
oo* tl- C t- t'10Z 1

ON CM t--\,D -
0 ~ ~ C 01 c Y (y) -:T LA\ t-

43F-4)CM-

0C H- t%- NM\D

H 0A- CMo CC)

0) co ~ 0n (Y) _ LA'. \10 t

01\ 0) ON L H -z4 t- \,O -:z \D0 LA

4-) a)UN t- H- COD 0 C \D 00 CO'. HD r

00Q) HsiH H-

a) U)*- 0. t-\ 00- N\ c-T 01 C) ON

0 CMJ CMJ LA\ t- CM LAU 01 \
ON 0 (01CO ON 01) LA- -r-4 H LA
LA'0 \ D\0 C--CC) ON\ O H H-

444*24 H 01 ON\ ON t- -t0 o00

CC) o 01\ 0 -\O ON \ z ON 010
COOO 0 A A ON-I ON CM

0 -~ ------C O O O H C

0 ~ ~ CCOj ON ON-t0, H CO LAO CO
P4 t-r-H CMj LA\0 \D - ON m _-r ON

t.- -4 CM A1 0 0 ON CM t-:
\,o 0) 03\C 0CMjU- LALA(014T\,O\,D
CO.O c ONONOý 0 CM CMj CM CM

H ~~H Hi H- H- H H

(n 00 ONI H .4 01r --T _: 0

011- t--4 01r C C>- CM 0 CM CMj
LH) 0 \0 H- t-CO CO) oo CO: H 0 1 -

ONON) 0 0 Hir Y H 0 :T1 ---T
r-I ý-4H HA H H- H H- H H

I0)
0 H CMj 01.4 LA\) 1D>-CO0 ON 0

121



TABLE 3.1

BEAM PARAMETERS

E 10.5 x 106 lbs/in.

p 0.101 lbs/in. 3

h 0.108 inch

d 1.01 inches

H 1.693 inches

h 0.213 inches
s

b 3.0 inches

L 18.0 inches

M 5 or 7

N 6
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TABLE 3.2

Calculated Natural Frequencies for a 6 span Beam

5 stringers,simply 7 stringers, simply 5 or 7 stringers and
Mode supported ends supported ends fully fixed ends

Energy Transfer Energy Transfer
Method Matrix Method Matrix Transfer Matrix
(Eq.3.16) Method (Eq.317) Method Method only

Hz. Hz. Hz. Hz. Hz.

1 20.8 20.7 20.7 20.6 46.81
2 81.6 81.8 80.0 80.1 125.79
3 178 179 172 172 237.32
4 309 307 290 286 373.31
5 465 458 424 411 532.59
6 *635 593 *565 526 658.21
7 833 767 722 670 807.o6
8 1035 903 88o 770 928.06
9 1245 1006 1035 867 1017.46

10 1455 1068 1195 957 1071.29

*Equation (3.15)

TABLE 3.3

Calculated Natural Frequencies for a Simple Beam
(no stringers)

Simply Supported Ends Fixed Ends
Mode Ref. 18 Transfer Matrix Ref. 18 Transfer Matrix

Method Method
Hz Hz Hz Hz

1 30.29 30.29 68.67 68.67
2 121.17 121.18 189.29 189.30
3 272.63 272.65 371.09 371.11
4 484.68 484.71 613.43 613.46
5 757.32 757.36 916.37 916.40
6 1090.54 1090.59 1279.89 1279.93
7 1484.34 1484.42 1703.99 1704.05
8 1938.83 1938.83 2188.68 2188.76
9 2453.71 2453.84 2733.96 2734.06

10 13029.27 3029.43 3339.83 3339.94
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TABLE 4.1

Panel Response (to Single Point Excitation) reduction produced
by Various Damping Treatments (Reference 10)

Mode at Percentage Strain Reduction
(Hz) Treatment A Treatment B (widths)

(centre i
surface) 1 in. 2 in. 3 in. 6 in. 22 in.

320 28 49 54 62 65 72
420 61 84 85 87 87 88
470 79 91 92 92 92 93
520 81 78 78 82 87 90

RMS
Strain 39 43 44 45 46 51

TABLE 4.2

Calculated Strain Energies - 6 Dampers Fixed at Each End

Tde Tdf TmMode
EdId EdId EI

(Eq. 4.7) (Eq. 4.24) (Eq. 4.31)
(Fig. 4.18)

1 39.0 5.9 x 10-3 4.18 x l0-3

2 5.82 x 102 1.8 x 10-2 6.68 x 10-2

3 2. 6 2 x 103 6.8 x 101- 3.38 x 10-I

4 6.96 x l03 4.0 1.07

5 1.36 x lo4 - 22.0 2.61
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TABLE 6.1

Natural Frequencies of a 6 Span Simply Supported
Beam with 7 Stringers

Theoretical Experimental (steady state
Mode Energy Method Transfer Matrix No Added .5" x .00"

(Eq. 3.7) Method Damping Cantilevers
(Hz) (Hz)

1 20.7 20.6 40.7 34.5
2 80.0 80.1 84.3 78.5
3 172 172 178.5 177.9
4 290 286 293.1 276.6
5 424 411 418.1 380.8
6 *565 526 504.2 439.6
7 722 670 676 575

equation (3.15)

TABLE 6.2

6 Span Simply Supported Beam Loss Factors
(steady state measurements)

nt for the beam with .5 in x .080 in.
Mode cantilever dampers

I• theoretical experimental
Experimental (eq. 4.30)

1 .014 .032 .034
2 .0012 .036 .019
3 .0012 .047 .051
4 .0034 .020 .012
5 .0016 .016 .009
6 .0017 .007
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TABLE 6.3

Characteristics of a 6 Span Simply Supported Beam with 7 Stringers
(Measured by a Transient Technique)

Mode Natural Frequency(Hz) Loss Factor Added Weight (W

a b c d a b c d a b c d
1 41.2 37.0 37.5 34.5 .0065 .024 .030 .050 0 6.9 13.8 9.2
2 84.2 79.4 76.0 78.5 .0017 .038 .061 .032

3 178.5 176.6 175 175 .0016 .027 .043 .013

4 293 279 268 275 .0030 .015 .026 .0083
5 418 386 - 380 .0019 .011 - .011

6 504 450 404 437 .0015 .012 .017 .009

a - beam with no added damping

b - beam with 0.5 inch by 0.06 inch double cantilever damping

c - beam with 1.0 inch by 0.06 inch double cantilever damping

d - beam with 0.5 inch by 0.08 inch double cantilever damping
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TABLE 7.1

Reduction in the Peaks of the Frequency Response Curve for a Six

Span Panel by the Addition of LD400 Damping Material Across the
Stringer Tips (Acoustic Excitation).

Mode at Percentage reduction
(Hz) 1 in by 0.060 in 2 inch by 0.060 inch

(.85% weight added) (1.7% weight added)

230 80 88
350 73 71
550 90 91
720 69 80

TABLE 7.2

Measured Root Mean Square Panel Response to Random Acoustic Excitation

Strain Response (amplified strain gauge signal) Percentage

Gauge volts strain

No additional damping 2 inch by .060 inch reduction
LD 400

13 11.5 3.4 70
14 10.5 1.9 82

15 13.0 3.5 73

128



TABLE 7.3

Reduction in Panel Root Mean Square Response to Random Excitation
by Two Widths and Two Thicknesses of LD 400.

Damping Damping Material Percentage Percentage
Material Thickness Weight Reduction
Width (in.) Added in R.M.S.

(in.) response*

3.0 0.125 5.25 75
1.0 0.125 1.75 66
3.0 0.035 1.5 75
1.0 0.035 0.5 63

* each value is the mean Of the three gauges.

TABLE 7.4

Reduction in Panel Root Mean Square Response to Random Excitation
by the Shear Damper System.

Shear Beam Skin Shear Layer Percentage Reduction
Thickness Thickness in Strain Response

* (in.) (in.) +

.o18 .020 71

.036 .036 69

.o18 .075 65

* Top and bottom skins equal.
+ Mean of three gauges.
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TABLE 9.1

Percentage Reduction in Full Scale Specimen Response to Random Noise
by the Addition of Strip Dampers.

Damping Treatment Percentage Strain
Reduction

3 in x .125 in. x 15 in LD400 42

1 in x .125 in. x 15 in LD400 32

3 in x .035 in. x 15 in LD400 38

1 in x .035 in. x 15 in LD400 27

1 in x .056 in x 15 in shear damper 35
(.018 skins, .020 fluorinated
silicone rubber layer)
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Rivets 70-

(a) Conventional skin stringer structure

(b) Integrally stiffened structure machined from
a solid slab.

Fig. 2.1 Skin stringer configurations
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108.2 Hz

115.0 Hz

122. 1 Hz

127"9 Hz

Fig. 2.2 Normal modes for six spans with equal

stringer spacing .(Ref. 4).
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End support structure

Exciter position for
single point excitation

1 2 3 4 7 8 9 1011
4 m Vm0111111 -- I 2206

A 15 13 14 A

1840

0 Lii19 UU Af01U U
2I 6 equal spans 2

Mild steel stiffener
SECTION A-A

NOTE : Numbers on panel denote strain gauges bonded to outside skin
surface .

Fig. 2.5 Test panel details
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Fig2.7 Schematic of stringer geometry for
parameter calculations.
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Fig. 2. 8 (a) Calculated mode shapes for an integrally stiffened panel
with edges parallel to stringers simply supported

138



V4-

rd

0)

Fig. 2.8(b) Calculated bending moments for an integrally stiffened panel
with edges parallel to stringers simply supported
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Fig. 2.9(-a) Calculated mode shapes for an integrally stiffened panel
with edges parallel to stringers clamped
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Fig. 2.9(b) Calculated bending moments for an integrally stiffened pane3

with edges parallel to stringers clamped

1h4



w

Q)
bD

H

U)

0
4-)

H
a1)

H

H

0

(D

-Q,

cI

ýo.H

Pi)

1442



0

HV
H

H

P4

cu

<w

f4-)

P4-

Id

7H

4,)
4$

0

+3

0

to

0

C\j

Normalized bending moment

143



900-

/
/

0
800 /-- /

-- /
U /

C 700

t..-/ /-U / /

Z 600 / /
/ ///

Edges parallel to / +
stringers fully fixed /

+/40(/ / // /

400 /

Integrally dges parallel '..'

Stiffened panel. 1000' to stringers simply,,,'
300- / / supported - /

/0 //

/I Edges parallel to
/ / stringers free

/7100- / / A

ALL stringer constants zero
L .-- unstiffened panel

0 I I I I
1 2 3 4 5 6

Mode number
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Fig. 2.14 Calculated integrally stiffened panel mode shapes for 6 spans

and fixed edges.. Frame pitch = 10.0 inches.
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Fig. 2.14 concluded
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Fig. 2.15 Calculated integrally stiffened panel mode shapes for 6 spans

and fixed edges. Frame pitch = 11.0 inches
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Fig. 2.15 concluded
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Fig. 2.16 Calculated integrally stiffened panel mode shapes for 6 spans
and fixed edges. Frame pitch = 12.0 inches
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Fig. 2.16 concluded
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Fig. 2.17 Calculated integrally stiffened panel mode shapes for 6 spans
and fixed edges. Frame pitch = 14.0 inches
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Fig. 2.17 concluded
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Fig. 3.2 Natural frequencies for a 6 span beam (Transfer
Matrix method ) (Geometry of table 3.1)
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Damping material

(a) TREATMENT A- Damping material bonded to skin between stringers.

Damping
material

(b) TREATMENT B - Damping material bonded across the tops of the
stringers.

Damping,

material.

Added mass.

(c) TREATMENT C -Damping material bonded across the tops of the

stringers and masses added to the damping material

Fig.4.1 . Damping treatments
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Fig. 4.3 Force at forced and of damped cantilever beam.
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Fig.4.4 Moment at forced end of damped cantilever beam.
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A Damping material bonded to skin between stringers

over the entire plate area.

B -.-.- A' ptus 1"wide strip of damping material bonded
across the tops of the stringers at panel mid -length.

As in'B' but damping material strip 2"wide.

(Damping material 0.060 in thick)

(Panel supported as in Fig. 7.1)
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Fig.7.2 Variation in response of the test panel to harmonic

acoustic excitation with the addition of damping material.
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Fig 7.b Tbst panel mounted in the acoustic tunnel
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excitation (configuration of Figure 7.12) and the derived transfer
function.
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Fig 9.1 Full scale test specimen
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